Skip to content

My CV generated from JSON data in Markdown and other formats.

Notifications You must be signed in to change notification settings

jakobatgithub/myCV

Repository files navigation

📄 Curriculum Vitae of Jakob Löber

PhD in Theoretical Physics | Data Science | Web Development | Augmented Reality

Gärtnerstraße 13, 10245 Berlin
📞 +49 1573 5586275
✉️ jakob@physik.tu-berlin.de
🗓️ Born: 1982-09-21 in Erfurt
💼 Status: single, Children: No
🎓 PhD physicist
🌐 GitHub

💼 Professional Background

since 02/2024
Fullstack Developer — Prosumio GmbH, Berlin

  • Development of a Python backend for a web application using Django and Wagtail
  • Implementation of REST APIs and Celery for asynchronous task management
  • Integration of MQTT (EMQX) for real-time data processing
  • Flutter for mobile app development on iOS and Android

01/2024 – 06/2024
Senior Data Scientist — Teraki GmbH, Berlin

  • Object detection in LiDAR and camera data using modern deep learning techniques
  • AWS EC2 and S3 for cloud computing and storage
  • Spiking neural networks for real-time event camera data analysis

06/2023 – 12/2023
Augmented Reality Software Developer — BetaRoom UG, Berlin

  • Developed the augmented reality application 'KIKI Games'
  • Optimized 3D rendering performance for mobile devices
  • Porting an AR application from iOS to Oculus Quest 2

05/2020 – 05/2023
Freelance Programmer — Freelance, Berlin

  • Developed the augmented reality applications 'KIKI Games' and 'Augmented Berlin'
  • Cross-platform development in Unity for iOS and Android
  • Designed and implemented custom AR solutions for clients
  • Collaborated with designers to create interactive AR experiences

12/2016 – 11/2018
Scientific Assistant — Max Planck Institute for the Physics of Complex Systems, Dresden

  • Postdoc in the department 'Biological Physics'
  • 13 peer-reviewed scientific publications
  • >20 presentations at conferences

07/2015 – 11/2016
Scientific Assistant — Technical University Berlin

  • Postdoc in the research group 'Nonlinear Dynamics and Pattern Formation'

🎓 Education

2011 – 2015
PhD in Theoretical Physics — Technical University Berlin

  • Grade: summa cum laude
  • Title: Optimal Trajectory Tracking

2002 – 2010
Diploma in Physics — Technical University Berlin

  • Grade: 1.0
  • Focus: Statistical physics, Mathematical physics, Thermodynamics

1993 – 2001
High School Diploma in — von-Bülow Gymnasium Neudietendorf

  • Grade: 1.8

🌟 Other Activities and Experiences

01/2022 – 04/2022
Data Science Bootcamp — Data Science Retreat, Berlin

12/2018 – 04/2020
Cycling trips through South America and Europe — Worldwide

01/2013 – 06/2013
Research stay with Igor Aronson — Argonne National Lab, Chicago

04/2016 – 07/2016
Tutor for 'Thermodynamics and Statistical Physics' — Institute for Theoretical Physics, TU Berlin

10/2015 – 02/2016
Tutor for 'Nonlinear Dynamics and Structure Formation' — Institute for Theoretical Physics, TU Berlin

02/2012 – 07/2012
Tutor for 'Nonequilibrium Statistical Physics' — Institute for Theoretical Physics, TU Berlin

10/2007 – 09/2009
Tutor for 'Physics for Engineers' — Institute for Solid State Physics, TU Berlin

07/2006 – 09/2007
Backpacking through Asia and Africa — Worldwide

🧰 Skills Overview

🧰 Skills Overview

Programming Languages Python Ecosystem Machine Learning & AI Scientific & Engineering Tools Web Development & Backend DevOps, CI/CD & Tooling Testing & Code Quality
[■■■■■■■■■□]
Python
[■■■■■■■■□□]
NumPy
[■■■■■■■■■□]
CNNs
[■■■■■■■■■■]
Mathematica
[■■■■■■■■■□]
Django
[■■■■■■■■■□]
Git
[■■■■■■■■□□]
unittest
[■■■■■□□□□□]
C#
[■■■■■■■■□□]
matplotlib
[■■■■■■■□□□]
Deep Learning
[■■■■■■■■□□]
Lyx
[■■■■■■■■□□]
MQTT (EMQX)
[■■■■■■■■□□]
Docker
[■■■■■■■■□□]
TTD (Test-Driven Development)
[■■■■■□□□□□]
Dart
[■■■■■■■□□□]
PyTorch
[■■■■■■■□□□]
Reinforcement Learning
[■■■■■■■□□□]
LaTeX
[■■■■■■■□□□]
Wagtail
[■■■■■■□□□□]
Bitbucket
[■■■■■■□□□□]
coverage.py
[■■■■□□□□□□]
C/C++
[■■■■■■■□□□]
pip
[■■■■■■□□□□]
Numerical optimization
[■■■■■□□□□□]
LiDAR
[■■■■■■□□□□]
REST APIs
[■■■■■□□□□□]
make
[■■■■□□□□□□]
pytest
[■■■□□□□□□□]
Java
[■■■■■■■□□□]
Jupyter Notebook
[■■■■■■□□□□]
Q-learning
[■■■■□□□□□□]
Matlab
[■■■■■■□□□□]
Celery
[■■■■■□□□□□]
Bitbucket CI/CD pipeline
[■■■■□□□□□□]
Ruff
[■■■□□□□□□□]
JSON
[■■■■■□□□□□]
SciPy
[■■■■■■□□□□]
Copilot
[■■■□□□□□□□]
ROS
[■■■■■□□□□□]
PostgreSQL
[■■■■□□□□□□]
AWS
[■■□□□□□□□□]
Black
[■■□□□□□□□□]
JavaScript
[■■■■■□□□□□]
Conda
[■■■■■□□□□□]
wandb
[■■□□□□□□□□]
LabView
[■■■■■□□□□□]
Firebase
[■■□□□□□□□□]
Kubernetes
[■□□□□□□□□□]
HTML
[■■■■■□□□□□]
scikit-learn
[■■■■■□□□□□]
Object Detection (YOLO)
[■■■■■□□□□□]
SQLite
[■□□□□□□□□□]
CSS
[■■■■■□□□□□]
virtualenv
[■■■■□□□□□□]
Modern Hopfield Networks
[■■■■■□□□□□]
JWT
[■■■■■□□□□□]
SymPy
[■■■□□□□□□□]
Comet
[■■■■□□□□□□]
Redis
[■■■■■□□□□□]
TensorFlow
[■■□□□□□□□□]
Nginx
[■■■■□□□□□□]
Pandas
[■■□□□□□□□□]
MySQL
[■■■■□□□□□□]
typing (type hints)
[■■□□□□□□□□]
Jinja
[■■■■□□□□□□]
Poetry
[■■■□□□□□□□]
Plotly
[■■■□□□□□□□]
seaborn
[■■■□□□□□□□]
PyTorch Lightning
[■■■□□□□□□□]
Keras
[■■□□□□□□□□]
h5py
Mobile & Cross-Platform Development Visualization, UI & Graphics Operating Systems & Shell Project & Team Collaboration Markup & Documentation Soft Skills & Meta Skills
[■■■■■■□□□□]
Flutter
[■■■■■■■■□□]
OpenCV
[■■■■■■■■■□]
Linux (Ubuntu, Debian)
[■■■■■■■■□□]
Jira
[■■■■■■■■■□]
Lyx
[■■■■■■■■■□]
Scientific Writing
[■■■■■■□□□□]
iOS
[■■■■■■■■□□]
Unity
[■■■■■■■□□□]
bash
[■■■■■■□□□□]
Slack
[■■■■■■■■□□]
LaTeX
[■■■■■■■■■□]
Research Skills
[■■■■■□□□□□]
Android Studio
[■■■■■■□□□□]
Computer Vision
[■■■■■■■□□□]
ssh
[■■■■■□□□□□]
Confluence
[■■■■■■□□□□]
Markdown
[■■■■■■■■□□]
University Teaching
[■■■■□□□□□□]
Android
[■■■■■■□□□□]
3D Visualization
[■■■■■□□□□□]
GCC
[■■■■■□□□□□]
Chrome
[■■■■■■■■□□]
Presentation Skills
[■■■□□□□□□□]
Xcode
[■■■□□□□□□□]
Blender
[■■■■■□□□□□]
Putty
[■■■■■■■■□□]
Mathematical Modeling
[■■■□□□□□□□]
GIMP
[■■■□□□□□□□]
Unix
[■■■■■■■□□□]
Data Analysis
[■■■□□□□□□□]
Inkscape
[■■■■■■□□□□]
Teaching
[■□□□□□□□□□]
Qt
📚 Publications

📚 Publications (21)

  1. Wave propagation in heterogeneous bistable and excitable media
    S. Alonso, J. Löber, M. Bär, H. Engel
    Eur. Phys. J. Spec. Top. 187, 31 (2010)
    Link to article

  2. Handheld device for fast and non-contact optical measurement of protein films on surfaces
    F.J. Schmitt, H. Südmeyer, J. Börner, J. Löber, K. Olliges, K. Reineke, I. Kahlen, P. Hätti, H.J. Eichler, H.J. Cappius
    Opt. Laser. Eng. 49, 1294 (2011)
    Link to article

  3. Front propagation in one-dimensional spatially periodic bistable media
    J. Löber, M. Bär, H. Engel
    Phys. Rev. E 86, 066210 (2012)
    Link to article

  4. Analytical approximations for spiral waves
    J. Löber, H. Engel
    Chaos 23, 043135 (2013)
    Link to article

  5. Stabilization of a scroll ring by a cylindrical Neumann boundary
    P.V. Paulau, J. Löber, H. Engel
    Phys. Rev. E 88, 062917 (2013)
    Link to article

  6. Modeling crawling cell movement on soft engineered substrates
    J. Löber, F. Ziebert, I.S. Aranson
    Soft Matter 10, 1365 (2014)
    Link to article

  7. Controlling the position of traveling waves in reaction-diffusion systems
    J. Löber, H. Engel
    Phys. Rev. Lett. 112, 148305 (2014)
    Link to article

  8. Stability of position control of traveling waves in reaction-diffusion systems
    J. Löber
    Phys. Rev. E 89, 062904 (2014)
    Link to article

  9. Control of chemical wave propagation
    J. Löber, R. Coles, J. Siebert, H. Engel, E. Schöll
    Engineering of Chemical Complexity II, pp. 185-207, World Scientific (2014)
    Link to article

  10. Phase-field description of substrate-based motility of eukaryotic cells
    I.S. Aranson, J. Löber, F. Ziebert
    Engineering of Chemical Complexity II, pp. 93-104, World Scientific (2014)
    Link to article

  11. Shaping wave patterns in reaction-diffusion systems
    J. Löber, S. Martens, H. Engel
    Phys. Rev. E 90, 062911 (2014)
    Link to article

  12. Front propagation in channels with spatially modulated cross section
    S. Martens, J. Löber, H. Engel
    Phys. Rev. E 91, 022902 (2015)
    Link to article

  13. Collisions of deformable cells lead to collective migration
    J. Löber, F. Ziebert, I.S. Aranson
    Sci. Rep. 5, 9172 (2015)
    Link to article

  14. Optimal trajectory tracking
    J. Löber
    Ph.D. thesis, Technical University Berlin (2015)
    Link to article

  15. Analytical, Optimal, and Sparse Optimal Control of Traveling Wave Solutions to Reaction-Diffusion Systems
    C. Ryll, J. Löber, S. Martens, H. Engel, F. Tröltzsch
    Control of Self-Organizing Nonlinear Systems, pp. 189-210, Springer (2016)
    Link to article

  16. Macroscopic model of substrate-based cell motility
    F. Ziebert, J. Löber, I.S. Aranson
    Physical Models of Cell Motility, pp. 1-67, Springer (2016)
    Link to article

  17. Optimal Trajectory Tracking of Nonlinear Dynamical Systems
    J. Löber
    Springer, ISBN 978-3-319-46573-9 (2017)
    Link to article

  18. Exactly realizable desired trajectories
    J. Löber
    arXiv:1603.00611 (2016)
    Link to article

  19. Control of transversal instabilities in reaction-diffusion systems
    S. Molnos, J. Löber, J.F. Totz, H. Engel
    New J. Phys. 20, 053034 (2018)
    Link to article

  20. Linear structures in nonlinear optimal control
    J. Löber
    arXiv:1604.01261 (2016)
    Link to article

  21. Oscillatory Motion in an Active Poroelastic Two-Phase Model
    D.A. Kulawiak, J. Löber, M. Bär, H. Engel
    PLOS ONE 14, e0217447 (2019)
    Link to article

📘 Academic Theses

📘 Academic Theses

📗 Doctoral Thesis

Title: Optimal trajectory tracking

Supervisors: Prof. Harald Engel, Prof. Alexander S. Mikhailov, Prof. Fredi Tröltzsch

Date of Defence: July 2015

Defence Talk: Optimal trajectory tracking

Abstract: This thesis investigates optimal trajectory tracking of nonlinear dynamical systems with affine controls. The control task is to enforce the system state to follow a prescribed desired trajectory as closely as possible. The concept of so-called exactly realizable trajectories is proposed. For exactly realizable desired trajectories exists a control signal which enforces the state to exactly follow the desired trajectory. For a given affine control system, these trajectories are characterized by the so-called constraint equation. This approach does not only yield an explicit expression for the control signal in terms of the desired trajectory, but also identifies a particularly simple class of nonlinear control systems. Systems in this class satisfy the so-called linearizing assumption and share many properties with linear control systems. For example, conditions for controllability can be formulated in terms of a rank condition for a controllability matrix analogously to the Kalman rank condition for linear time invariant systems. Furthermore, exactly realizable trajectories, together with the corresponding control signal, arise as solutions to unregularized optimal control problems. Based on that insight, the regularization parameter is used as the small parameter for a perturbation expansion. This results in a reinterpretation of affine optimal control problems with small regularization term as singularly perturbed differential equations. The small parameter originates from the formulation of the control problem and does not involve simplifying assumptions about the system dynamics. Combining this approach with the linearizing assumption, approximate and partly linear equations for the optimal trajectory tracking of arbitrary desired trajectories are derived. For vanishing regularization parameter, the state trajectory becomes discontinuous and the control signal diverges. On the other hand, the analytical treatment becomes exact and the solutions are exclusively governed by linear differential equations. Thus, the possibility of linear structures underlying nonlinear optimal control is revealed. This fact enables the derivation of exact analytical solutions to an entire class of nonlinear trajectory tracking problems with affine controls. This class comprises, among others, mechanical control systems in one spatial dimension and the FitzHugh-Nagumo model with a control acting on the activator.

📕 Diploma Thesis

Title: Nonlinear Excitation Waves in Spatially Heterogeneous Reaction-Diffusion Systems

Supervisors: Prof. Harald Engel, Prof. Markus Bär

Abstract: Wave propagation in one-dimensional heterogeneous bistable media is studied for the Schlögl model. Starting from the analytically known traveling wave solution for the homogeneous medium, non-localized, spatially periodic variations in kinetic parameters as the excitation threshold, for example, are taken into account perturbatively. Two different multiple scale perturbation methods are applied to derive a differential equation for the position of the front under perturbations. All analytical results are compared to the results of numerical simulations.

🗣️ Scientific Presentations

🗣️ Scientific Presentations (44)

  1. Velocity of Fronts in Heterogeneous Reaction-Diffusion Systems
    Harz seminar, February 2009, Hahnenklee

  2. Chemical Master Equations and Fluctuation Theorem
    Group Seminar, February 2011, TU Berlin

  3. Control of traveling waves and analytical approximations for spiral waves
    GRK Kolloquium, July 2012, TU Berlin

  4. Controlling the position of traveling waves
    SFB Symposium, November 2012, TU Berlin

  5. Stochastic reaction-diffusion systems
    Group Seminar, January 2013, TU Berlin

  6. Analytical approximations for spiral waves
    Harz seminar, February 2013, Hahnenklee

  7. Controlling the position of fronts
    Spring conference of the German Physical Society, March 2013, Regensburg

  8. Controlling the position of traveling fronts
    APS March Meeting, March 2013, Baltimore, USA

  9. Controlling the position of fronts
    IMACS Conference on Nonlinear Waves, March 2013, Athens, Georgia, USA

  10. Controlling the position and shape of traveling waves
    BCSCCS conference, June 2013, Warnemünde

  11. Controlling the position of traveling waves in reaction-diffusion systems
    DDays Berlin Brandenburg, October 2013, TU Berlin

  12. Modeling crawling cell movement
    GRK Kolloquium, October 2013, Graal-Müritz

  13. Stability of position control of traveling waves
    Group seminar, October 2013, TU Berlin

  14. Controlling the position of traveling waves in reaction-diffusion systems
    Dynamics Days US 2014, January 2014, Georgia Tech, Atlanta, USA

  15. Position and shape control of nonlinear waves
    Harz seminar, February 2014, Hahnenklee

  16. Modeling crawling cell movement
    Group seminar, April 2014, TU Berlin

  17. Controlling the position of traveling waves in reaction-diffusion systems
    Nonlinear Dynamics of Deterministic and Stochastic Systems: Unraveling Complexity, May 2014, Saratov, Russia

  18. Modeling crawling cell motility
    BCSCCS Seminar, June 2014, FHI Berlin

  19. Modeling crawling cell motility
    Seminar, July 2014, HU Berlin

  20. Modeling crawling cell motility
    Mini-Symposium on cell motility, July 2014, TU Berlin

  21. Controlling the position of traveling waves in reaction-diffusion systems
    SIAM Nonlinear Waves and Coherent Structures, August 2014, Cambridge, UK

  22. Modeling crawling cell motility
    Dynamics Days Europe, September 2014, Bayreuth

  23. Trajectory controllability, optimal trajectory tracking, exact linearization, and all that
    Group seminar, October 2014, TU Berlin

  24. Analytical approximations for nonlinear optimal trajectory tracking problems
    SFB Symposium, February 2015, TU Berlin

  25. Modeling crawling cell motility
    Spring conference of the German Physical Society, March 2015, TU Berlin

  26. Modeling crawling cell motility
    BCSCCS conference, June 2015, Munich

  27. Optimal trajectory tracking
    Ph.D. thesis defence, July 2015, TU Berlin

  28. Modeling crawling cell motility
    NECD15 conference, October 2015, Potsdam

  29. Free boundary problems and phase field methods
    Group seminar, November 2015, TU Berlin

  30. Modeling crawling cell motility
    Harz seminar, February 2016, Hahnenklee

  31. Thermodynamics of mechanochemical reactions
    Group seminar, June 2016, TU Berlin

  32. Poroelastic two-phase model for Physarum polycephalum with free boundaries
    Group seminar, November 2016, TU Berlin

  33. Poroelastic two-phase model for Physarum polycephalum with free boundaries
    MPIPKS Biophysics Group Retreat, January 2017, Oberwiesenthal

  34. Phase separation via Density Functional Theory
    Droplet Meeting, March 2017, Dresden

  35. Cross-linked Gels
    Droplet Meeting, July 2017, Dresden

  36. Cross-linked Gels
    Cortex Day, August 2017, Lichtenhain

  37. Rheology of cross-linked polymer networks
    Group seminar, September 2017, Dresden

  38. Thermorheology of polymer gels
    Internal seminar, October 2017, Dresden

  39. Rheology of polymer networks: chain length distribution
    Droplet Meeting, October 2017, Dresden

  40. Thermomechanical Manipulation of Gels
    Droplet Meeting, December 2017, Dresden

  41. Polymer gels and the two-fluid model
    Group seminar, January 2018, Berlin

  42. Phase separation in polyelectrolytes
    MPIPKS Biophysics Group Retreat, January 2018, Oberwiesenthal

  43. Transport through and chemical reactions at membranes
    Droplet Meeting, February 2018, Dresden

  44. Two-fluid model for crawling cell motility
    Harz seminar, February 2018, Hahnenklee

🧾 Posters

🧾 Posters (11)

  1. Velocity of Fronts in Periodic-Heterogeneous Reaction Diffusion Systems
    spring conference of the German Physical Society, March 2009, Dresden

  2. Kinematic Theory of Spiral Waves
    BCSCCS conference, June 2011, Berlin

  3. Controlling the position of a front
    GRK conference, October 2012, Potsdam

  4. Analytical approximations for spiral waves
    GRK conference, October 2012, Potsdam

  5. Curvature-dependent feedback control of two-dimensional excitation waves
    DPG conference, March 2013, Regensburg

  6. Analytical approximations for spiral waves
    GRK defence, June 2013, TU Berlin

  7. Controlling the position of a front
    Dynamics Days Europe, September 2014, Bayreuth

  8. Front propagation in three-dimensional corrugated reaction-diffusion media
    Dynamics Days Europe, September 2014, Bayreuth

  9. Modeling cell movement on heterogeneous substrates
    Model systems for understanding biological processes, February 2015, Bad Honnef

  10. Linear structures in nonlinear optimal control
    Control of Complex Systems and Networks, September 2016, Heringsdorf

  11. Position Control of Traveling Spots
    Control of Complex Systems and Networks, September 2016, Heringsdorf

About

My CV generated from JSON data in Markdown and other formats.

Resources

Stars

Watchers

Forks

Languages