Detect fraudulent transactions using machine learning models with SMOTE handling for class imbalance. Models included: Logistic Regression, Random Forest, XGBoost, SVM.
- Install dependencies: pip install pandas scikit-learn xgboost imbalanced-learn matplotlib seaborn
- Run the model: python fraud_model.py
- Check dashboard_fraud.png for the confusion matrix.
- Hyperparameter tuning
- Improve dashboard with feature importance and ROC curves