Skip to content

The official implementation of 'DualGazeNet: A Biologically Inspired Dual-Gaze Query Network for Salient Object Detection'

License

Notifications You must be signed in to change notification settings

jeremypha/DualGazeNet

Repository files navigation

DGNet

DualGazeNet: A Biologically Inspired Dual-Gaze Query Network for Salient Object Detection

Yu Zhang, Haoan Ping, Yuchen Li, Zhenshan Bing, Wei He, Fellow, IEEE, Fuchun Sun, Fellow, IEEE, Alois Knoll, Fellow, IEEE

Technical University of Munich

Paper:(arxiv:2511.18865)

Abstract

DualGazeNet is a biologically inspired Transformer framework for salient object detection, designed with dual-path processing inspired by the human visual system. It achieves state-of-the-art performance on five RGB SOD benchmarks as well as 4 COD benchmarks and USOD10K dataset.

Overview

arch

News

  • Nov 25, 2025: We released our paper on arxiv.

  • Nov 20, 2025: We released the well-trained weights under different configs for SOD/COD/USOD tasks with various resolutions. We also provide the corresponding datasets, the pretrained backbone weights and their prediction maps from both our models and other SOTA models.

  • Nov 17, 2025: We released DGNet codes.

Usage

Installation

Step 1:

Clone this repository

git clone https://github.com/jeremypha/DualGazeNet.git
cd DualGazeNet

Step 2:

Create a new conda environment
conda create --name dgnet
conda activate dgnet
Install Dependencies
pip install torch --index-url https://download.pytorch.org/whl/cu<your cuda version>
pip install -r requirements.txt
Set up Datasets
-- datasets
    |-- SOD
    |    |-- DUTS-TR
    |    |   |-- im
    |    |   |-- gt
    |    |-- DUTS-TE
    |    |   |-- im
    |    |   |-- gt
    |    |-- DUT-OMRON
    |    |   |-- im
    |    |   |-- gt
    |    |-- ECSSD
    |    |   |-- im
    |    |   |-- gt
    |    |-- HKU-IS
    |    |   |-- im
    |    |   |-- gt
    |    |-- PASCAL-S
    |    |   |-- im
    |    |   |-- gt
    |-- COD
    |-- USOD

All datasets are publicly available from their official sources: DUTS, DUT-OMRON, HKU-IS, ECSSD, and PASCAL-S.

For convenience, we provide pre-configured versions with consistent formatting in our BaiduNetDisk Folder, which also includes datasets for COD and USOD tasks.

Train

Download Pretrained Backbones and save it in ./weights

./scripts/train.sh TASK BACKBONE

# Example: ./scripts/train.sh SOD L
Evaluation and Predicted Saliency Map

Model weights and corresponding prediction maps for all configurations are available for download. Access the full dataset in our Google Drive Folder, or retrieve specific items individually from the following table.

Task Backbone Resolution Params(M) FLOPs(G) FPS Checkpoint Saliency Map
SOD Hiera-L 512×512 247.56 238.52 43 checkpoint Results
SOD Hiera-L 352×352 247.56 139.07 45 checkpoint Results
SOD Hiera-L 224×224 247.56 48.59 46 checkpoint Results
SOD Hiera*-L 512×512 162.32 217.11 48 checkpoint Results
SOD Hiera*-L 352×352 162.32 126.27 50 checkpoint Results
SOD Hiera*-L 224×224 162.32 44.19 52 checkpoint Results
SOD Hiera-B 512×512 91.92 102.78 61 checkpoint Results
SOD Hiera-B 352×352 91.92 47.95 64 checkpoint Results
SOD Hiera-B 224×224 91.92 17.89 69 checkpoint Results
SOD Hiera*-B 512×512 49.23 83.47 72 checkpoint Results
SOD Hiera*-B 352×352 49.23 39.13 77 checkpoint Results
SOD Hiera*-B 224×224 49.23 18.86 78 checkpoint Results
COD Hiera-L 512×512 247.56 238.52 43 checkpoint Results
USOD Hiera-L 512×512 247.56 238.52 43 checkpoint Results
./scripts/inference.sh TASK BACKBONE CHECKPOINT

# Example: ./scripts/inference.sh SOD L ./output/epoch_0.pth

Quantitative Comparison

arch

arch

arch

Here you can download saliency maps of SOD/COD/USOD tasks from other awesome models: BaiduNetDisk

Citation


About

The official implementation of 'DualGazeNet: A Biologically Inspired Dual-Gaze Query Network for Salient Object Detection'

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published