Technical University of Munich
Paper:(arxiv:2511.18865)
DualGazeNet is a biologically inspired Transformer framework for salient object detection, designed with dual-path processing inspired by the human visual system. It achieves state-of-the-art performance on five RGB SOD benchmarks as well as 4 COD benchmarks and USOD10K dataset.
-
Nov 25, 2025: We released our paper on arxiv. -
Nov 20, 2025: We released the well-trained weights under different configs for SOD/COD/USOD tasks with various resolutions. We also provide the corresponding datasets, the pretrained backbone weights and their prediction maps from both our models and other SOTA models. -
Nov 17, 2025: We released DGNet codes.
Clone this repository
git clone https://github.com/jeremypha/DualGazeNet.git
cd DualGazeNetconda create --name dgnet
conda activate dgnetpip install torch --index-url https://download.pytorch.org/whl/cu<your cuda version>
pip install -r requirements.txt-- datasets
|-- SOD
| |-- DUTS-TR
| | |-- im
| | |-- gt
| |-- DUTS-TE
| | |-- im
| | |-- gt
| |-- DUT-OMRON
| | |-- im
| | |-- gt
| |-- ECSSD
| | |-- im
| | |-- gt
| |-- HKU-IS
| | |-- im
| | |-- gt
| |-- PASCAL-S
| | |-- im
| | |-- gt
|-- COD
|-- USOD
All datasets are publicly available from their official sources: DUTS, DUT-OMRON, HKU-IS, ECSSD, and PASCAL-S.
For convenience, we provide pre-configured versions with consistent formatting in our BaiduNetDisk Folder, which also includes datasets for COD and USOD tasks.
Download Pretrained Backbones and save it in ./weights
./scripts/train.sh TASK BACKBONE
# Example: ./scripts/train.sh SOD L
Model weights and corresponding prediction maps for all configurations are available for download. Access the full dataset in our Google Drive Folder, or retrieve specific items individually from the following table.
| Task | Backbone | Resolution | Params(M) | FLOPs(G) | FPS | Checkpoint | Saliency Map |
|---|---|---|---|---|---|---|---|
| SOD | Hiera-L | 512×512 | 247.56 | 238.52 | 43 | checkpoint | Results |
| SOD | Hiera-L | 352×352 | 247.56 | 139.07 | 45 | checkpoint | Results |
| SOD | Hiera-L | 224×224 | 247.56 | 48.59 | 46 | checkpoint | Results |
| SOD | Hiera*-L | 512×512 | 162.32 | 217.11 | 48 | checkpoint | Results |
| SOD | Hiera*-L | 352×352 | 162.32 | 126.27 | 50 | checkpoint | Results |
| SOD | Hiera*-L | 224×224 | 162.32 | 44.19 | 52 | checkpoint | Results |
| SOD | Hiera-B | 512×512 | 91.92 | 102.78 | 61 | checkpoint | Results |
| SOD | Hiera-B | 352×352 | 91.92 | 47.95 | 64 | checkpoint | Results |
| SOD | Hiera-B | 224×224 | 91.92 | 17.89 | 69 | checkpoint | Results |
| SOD | Hiera*-B | 512×512 | 49.23 | 83.47 | 72 | checkpoint | Results |
| SOD | Hiera*-B | 352×352 | 49.23 | 39.13 | 77 | checkpoint | Results |
| SOD | Hiera*-B | 224×224 | 49.23 | 18.86 | 78 | checkpoint | Results |
| COD | Hiera-L | 512×512 | 247.56 | 238.52 | 43 | checkpoint | Results |
| USOD | Hiera-L | 512×512 | 247.56 | 238.52 | 43 | checkpoint | Results |
./scripts/inference.sh TASK BACKBONE CHECKPOINT
# Example: ./scripts/inference.sh SOD L ./output/epoch_0.pth
Here you can download saliency maps of SOD/COD/USOD tasks from other awesome models: BaiduNetDisk



