Skip to content

jessepike/memory

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Memory Layer

Local-first persistent memory service for agent workflows.

Requirements

  • Python 3.11+
  • pip and venv

Bootstrap

python -m venv .venv
source .venv/bin/activate
python -m pip install --upgrade pip
python -m pip install -e ".[dev]"

Development Commands

Run tests:

python -m pytest -q

Run the MCP smoke checklist:

python scripts/mcp_smoke.py --json

Run the MCP server over stdio:

python -m memory_core.access.mcp_server

Notes

  • Runtime data is stored under data/ (gitignored).
  • Default runtime configuration lives in config/memory_config.yaml.
  • If runtime is configured with enforce_offline: true, ensure embedding model artifacts are already provisioned locally.

Connecting Clients

The memory server uses stdio transport — each client spawns its own process on demand.

Claude Code (already registered at user scope):

claude mcp add -s user memory -- uv run --directory ~/code/_shared/memory python -m memory_core.access.mcp_server

Codex:

codex mcp add memory -- uv run --directory ~/code/_shared/memory python -m memory_core.access.mcp_server

Gemini:

gemini mcp add -s user memory uv run --directory ~/code/_shared/memory python -m memory_core.access.mcp_server

Once registered, memory tools (write_memory, search_memories, get_memory, etc.) are available in every session. See docs/usage.md for tool-by-tool examples.

Usage Guide

  • See docs/usage.md for practical tool-by-tool usage examples and common workflows.

About

agent memory

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages