Local-first persistent memory service for agent workflows.
- Python 3.11+
pipandvenv
python -m venv .venv
source .venv/bin/activate
python -m pip install --upgrade pip
python -m pip install -e ".[dev]"Run tests:
python -m pytest -qRun the MCP smoke checklist:
python scripts/mcp_smoke.py --jsonRun the MCP server over stdio:
python -m memory_core.access.mcp_server- Runtime data is stored under
data/(gitignored). - Default runtime configuration lives in
config/memory_config.yaml. - If runtime is configured with
enforce_offline: true, ensure embedding model artifacts are already provisioned locally.
The memory server uses stdio transport — each client spawns its own process on demand.
Claude Code (already registered at user scope):
claude mcp add -s user memory -- uv run --directory ~/code/_shared/memory python -m memory_core.access.mcp_serverCodex:
codex mcp add memory -- uv run --directory ~/code/_shared/memory python -m memory_core.access.mcp_serverGemini:
gemini mcp add -s user memory uv run --directory ~/code/_shared/memory python -m memory_core.access.mcp_serverOnce registered, memory tools (write_memory, search_memories, get_memory, etc.) are available in every session. See docs/usage.md for tool-by-tool examples.
- See
docs/usage.mdfor practical tool-by-tool usage examples and common workflows.