Skip to content

jouer50/quantdinger

 
 
QuantDinger Logo

QuantDinger


Next-Gen AI Quantitative Trading Platform

🤖 AI-Native · 🐍 Visual Python · 🌍 Multi-Market · 🔒 Privacy-First

Build, Backtest, and Trade with an AI Co-Pilot. Better than PineScript, Smarter than SaaS.

Official Community · Live Demo · 📺 Video Demo · 🌟 Join Us

License Python Vue Docker Stars

Telegram Group Discord X


📖 Introduction

What is QuantDinger?

QuantDinger is a local-first, privacy-first, self-hosted quantitative trading infrastructure. It runs on your own machine/server, providing multi-user accounts backed by PostgreSQL while keeping full control of your strategies, trading data, and API keys.

Why Local-First?

Unlike SaaS platforms that lock your data and strategies in the cloud, QuantDinger runs locally. Your strategies, trading logs, API keys, and analysis results stay on your machine. No vendor lock-in, no subscription fees, no data exfiltration.

Who is this for?

QuantDinger is built for traders, researchers, and engineers who:

  • Value data sovereignty and privacy
  • Want transparent, auditable trading infrastructure
  • Prefer engineering over marketing
  • Need a complete workflow: data, analysis, backtesting, and execution

Core Features

QuantDinger includes a built-in LLM-based multi-agent research system that gathers financial intelligence from the web, combines it with local market data, and generates analysis reports. This integrates with strategy development, backtesting, and live trading workflows.

Core Value

  • 🔓 Apache 2.0 Open Source (Code): Permissive and commercial-friendly. You can fork and modify the codebase under Apache 2.0, while preserving required notices.
  • 🐍 Python-Native & Visual: Write indicators in standard Python (easier than PineScript) with AI assistance. Visualize signals directly on charts—a "Local TradingView" experience.
  • 🤖 AI-Loop Optimization: It doesn't just run strategies; AI analyzes backtest results to suggest parameter tuning (Stop-Loss/TP/MACD settings), forming a closed optimization loop.
  • 🌍 Universal Market Access: One unified system for Crypto (Live), US/CN Stocks, Forex, and Futures (Data/Notify).
  • ⚡ Docker & Clean Arch: 4-line command deployment. Modern Tech Stack (Vue + Python) with a clean, separation-of-concerns architecture.

📺 Video Demo

QuantDinger Project Introduction Video

Click the video above to watch the QuantDinger project introduction


📚 Documentation

Guides

Notification Configuration

📸 Visual Tour

📊 Professional Quant Dashboard

Real-time monitoring of market dynamics, assets, and strategy status.

QuantDinger Dashboard

🤖 AI Deep Research

Multi-agent collaboration for market sentiment & technical analysis.

AI Market Analysis

💬 Smart Trading Assistant

Natural language interface for instant market insights.

Trading Assistant

📈 Interactive Indicator Analysis

Rich library of technical indicators with drag-and-drop analysis.

Indicator Analysis

🐍 Python Strategy Gen

Built-in editor with AI-assisted strategy coding.

Code Generation

📊 Portfolio Monitor

Track positions, set alerts, and receive AI-powered analysis via Email/Telegram.

Portfolio Monitor

✨ Key Features

1. Visual Python Strategy Workbench

Better than PineScript, Smarter than SaaS.

  • Python Native: Write indicators and strategies in Python. Leverage the entire Python ecosystem (Pandas, Numpy, TA-Lib) instead of proprietary languages like PineScript.
  • "Mini-TradingView" Experience: Run your Python indicators directly on the built-in K-line charts. Visually debug buy/sell signals on historical data.
  • AI-Assisted Coding: Let the built-in AI write the complex logic for you. From idea to code in seconds.

2. Complete Trading Lifecycle

From Indicator to Execution, Seamlessly.

  1. Indicator: Define your market entry/exit signals.
  2. Strategy Config: Attach risk management rules (Position sizing, Stop-Loss, Take-Profit).
  3. Backtest & AI Optimization: Run backtests, view rich performance metrics, and let AI analyze the result to suggest improvements (e.g., "Adjust MACD threshold to X").
  4. Execution Mode:
    • Live Trading:
      • Cryptocurrency: Direct API execution for 10+ exchanges (Binance, OKX, Bitget, Bybit, etc.)
      • US/HK Stocks: Via Interactive Brokers (IBKR) 🆕
      • Forex: Via MetaTrader 5 (MT5) 🆕
    • Signal Notification: For markets without live trading support (A-shares/Futures), send signals via Telegram, Discord, Email, SMS, or Webhook.

3. AI Multi-Agent Research

Your 24/7 AI Investment Committee.

The system employs a multi-agent team to act as a secondary filter for your strategies:

  • Research Agents: Scrape web news and macro events (Google/Bing).
  • Analysis Agents: Analyze technical indicators and capital flows.
  • Strategic Integration: The AI judgment can serve as a "Market Filter"—only allowing your strategy to trade when the AI sentiment aligns (e.g., "Don't buy if AI Risk Analyst flags high macro danger").

4. Universal Data Engine

QuantDinger provides a unified data interface across multiple markets:

  • Cryptocurrency: Direct API connections for trading (10+ exchanges) and CCXT integration for market data (100+ sources)
  • Stocks: Yahoo Finance, Finnhub, Tiingo (US stocks), and AkShare (CN/HK stocks)
  • Futures/Forex: OANDA and major futures data sources
  • Proxy Support: Built-in proxy configuration for restricted network environments

5. Memory-Augmented Agents (Local RAG + Reflection Loop)

QuantDinger’s agents don’t start from scratch every time. The backend includes a local memory store and an optional reflection/verification loop:

  • What it is: RAG-style experience retrieval injected into agent prompts (NOT model fine-tuning).
  • Where it lives: PostgreSQL database (shared with main data) or local files under backend_api_python/data/memory/ (privacy-first).
flowchart TB
    %% ===== 🌐 Entry Layer =====
    subgraph Entry["🌐 API Entry"]
        A["📡 POST /api/analysis/multi"]
        A2["🔄 POST /api/analysis/reflect"]
    end

    %% ===== ⚙️ Service Layer =====
    subgraph Service["⚙️ Service Orchestration"]
        B[AnalysisService]
        C[AgentCoordinator]
        D["📊 Build Context<br/>price · kline · news · indicators"]
    end

    %% ===== 🤖 Multi-Agent Workflow =====
    subgraph Agents["🤖 Multi-Agent Workflow"]

        subgraph P1["📈 Phase 1 · Analysis (Parallel)"]
            E1["🔍 MarketAnalyst<br/><i>Technical</i>"]
            E2["📑 FundamentalAnalyst<br/><i>Fundamentals</i>"]
            E3["📰 NewsAnalyst<br/><i>News & Events</i>"]
            E4["💭 SentimentAnalyst<br/><i>Market Mood</i>"]
            E5["⚠️ RiskAnalyst<br/><i>Risk Assessment</i>"]
        end

        subgraph P2["🎯 Phase 2 · Debate (Parallel)"]
            F1["🐂 BullResearcher<br/><i>Bullish Case</i>"]
            F2["🐻 BearResearcher<br/><i>Bearish Case</i>"]
        end

        subgraph P3["💹 Phase 3 · Decision"]
            G["🎰 TraderAgent<br/><i>Final Verdict → BUY / SELL / HOLD</i>"]
        end

    end

    %% ===== 🧠 Memory Layer =====
    subgraph Memory["🧠 PostgreSQL Memory Store"]
        M1[("market_analyst")]
        M2[("fundamental")]
        M3[("news_analyst")]
        M4[("sentiment")]
        M5[("risk_analyst")]
        M6[("bull_researcher")]
        M7[("bear_researcher")]
        M8[("trader_agent")]
    end

    %% ===== 🔄 Reflection Loop =====
    subgraph Reflect["🔄 Reflection Loop (Optional)"]
        R[ReflectionService]
        RR[("reflection_records.db")]
        W["⏰ ReflectionWorker"]
    end

    %% ===== Main Flow =====
    A --> B --> C --> D
    D --> P1 --> P2 --> P3

    %% ===== Memory Read/Write =====
    E1 <-.-> M1
    E2 <-.-> M2
    E3 <-.-> M3
    E4 <-.-> M4
    E5 <-.-> M5
    F1 <-.-> M6
    F2 <-.-> M7
    G <-.-> M8

    %% ===== Reflection Flow =====
    C --> R --> RR
    W --> RR
    W -.->|"verify + learn"| M8
    A2 -.->|"manual review"| M8
Loading

Retrieval ranking (simplified):

[ score = w_{sim}\cdot sim + w_{recency}\cdot recency + w_{returns}\cdot returns_score ]

Config lives in .env (see backend_api_python/env.example): ENABLE_AGENT_MEMORY, AGENT_MEMORY_TOP_K, AGENT_MEMORY_ENABLE_VECTOR, AGENT_MEMORY_HALF_LIFE_DAYS, and ENABLE_REFLECTION_WORKER.

6. Strategy Runtime

  • Thread-Based Executor: Independent thread pool for strategy execution
  • Auto-Restore: Resumes running strategies after system restarts
  • Order Queue: Background worker for order execution

7. Tech Stack

  • Backend: Python (Flask) + PostgreSQL + Redis (optional)
  • Frontend: Vue 2 + Ant Design Vue + KlineCharts/ECharts
  • Deployment: Docker Compose (with PostgreSQL)

🔌 Supported Exchanges & Brokers

QuantDinger supports multiple execution methods for different market types:

Cryptocurrency Exchanges (Direct API)

Exchange Markets
Binance Spot, Futures, Margin
OKX Spot, Perpetual, Options
Bitget Spot, Futures, Copy Trading
Bybit Spot, Linear Futures
Coinbase Exchange Spot
Kraken Spot, Futures
KuCoin Spot, Futures
Gate.io Spot, Futures
Bitfinex Spot, Derivatives

Traditional Brokers

Broker Markets Platform
Interactive Brokers (IBKR) US Stocks, HK Stocks TWS / IB Gateway 🆕
MetaTrader 5 (MT5) Forex MT5 Terminal 🆕

Market Data (via CCXT)

Bybit, Gate.io, Kraken, KuCoin, HTX, and 100+ other exchanges for market data.


Multi-Language Support

QuantDinger is built for a global audience with comprehensive internationalization:

English Simplified Chinese Traditional Chinese Japanese Korean German French Thai Vietnamese Arabic

All UI elements, error messages, and documentation are fully translated. Language is auto-detected based on browser settings or can be manually switched in the app.


Supported Markets

Market Type Data Sources Trading
Cryptocurrency Binance, OKX, Bitget, + 100 exchanges ✅ Full support
US Stocks Yahoo Finance, Finnhub, Tiingo ✅ Via IBKR 🆕
HK Stocks AkShare, East Money ✅ Via IBKR 🆕
CN Stocks (A-shares) AkShare, East Money ⚡ Data only
Forex Finnhub, OANDA ✅ Via MT5 🆕
Futures Exchange APIs, AkShare ⚡ Data only

Architecture (Current Repo)

┌─────────────────────────────┐
│      quantdinger_vue         │
│   (Vue 2 + Ant Design Vue)   │
└──────────────┬──────────────┘
               │  HTTP (/api/*)
               ▼
┌─────────────────────────────┐
│     backend_api_python       │
│   (Flask + strategy runtime) │
└──────────────┬──────────────┘
               │
               ├─ PostgreSQL (multi-user support)
               ├─ Redis (optional cache)
               └─ Data providers / LLMs / Exchanges

Repository Layout

.
├─ backend_api_python/         # Flask API + AI + backtest + strategy runtime
│  ├─ app/
│  ├─ env.example              # Copy to .env for local config
│  ├─ requirements.txt
│  └─ run.py                   # Entrypoint
└─ quantdinger_vue/            # Vue 2 UI (dev server proxies /api -> backend)

Quick Start

Option 1: Docker Deployment (Recommended)

The fastest way to get QuantDinger running with PostgreSQL database and multi-user support.

1. Configure Environment

Create a .env file in project root:

# Database Configuration
POSTGRES_USER=quantdinger
POSTGRES_PASSWORD=your_secure_password
POSTGRES_DB=quantdinger

# Admin Account (created on first startup)
ADMIN_USER=quantdinger
ADMIN_PASSWORD=123456

# Optional: AI Features
OPENROUTER_API_KEY=your_api_key

2. Start Services

Linux / macOS

git clone https://github.com/brokermr810/QuantDinger.git && \
cd QuantDinger && \
cp backend_api_python/env.example backend_api_python/.env && \
docker-compose up -d --build

Windows (PowerShell)

git clone https://github.com/brokermr810/QuantDinger.git
cd QuantDinger
Copy-Item backend_api_python\env.example -Destination backend_api_python\.env
docker-compose up -d --build

This will automatically:

  • Start PostgreSQL database (port 5432)
  • Initialize database schema
  • Start backend API (port 5000)
  • Start frontend (port 8888)
  • Create admin user from ADMIN_USER/ADMIN_PASSWORD in .env

3. Access the Application

Note: For production, edit backend_api_python/.env to set strong passwords, add OPENROUTER_API_KEY for AI features, then restart with docker-compose restart backend.

Docker Commands Reference

# View running status
docker-compose ps

# View logs
docker-compose logs -f

# View backend logs only
docker-compose logs -f backend

# View frontend logs only
docker-compose logs -f frontend

# Stop services
docker-compose down

# Stop and remove volumes (WARNING: deletes database!)
docker-compose down -v

# Restart services
docker-compose restart

# Rebuild and restart
docker-compose up -d --build

# Enter backend container
docker exec -it quantdinger-backend /bin/bash

# Enter frontend container
docker exec -it quantdinger-frontend /bin/sh

Docker Architecture

┌─────────────────┐     ┌─────────────────┐     ┌─────────────────┐
│   Frontend      │     │    Backend      │     │   PostgreSQL    │
│   (Nginx)       │────▶│   (Python)      │────▶│   Database      │
│   Port: 8888    │     │   Port: 5000    │     │   Port: 5432    │
└─────────────────┘     └─────────────────┘     └─────────────────┘
        │                       │                       │
        └───────────────────────┴───────────────────────┘
                         Docker Network
  • Frontend: Vue.js app served by Nginx, proxies API requests to backend
  • Backend: Python Flask API service with multi-user authentication
  • PostgreSQL: Database for user data, strategies, and trading records

Data Persistence

The following data is persisted across container restarts:

volumes:
  postgres_data:                                            # PostgreSQL database
  - ./backend_api_python/logs:/app/logs                     # Logs
  - ./backend_api_python/data:/app/data                     # Data directory
  - ./backend_api_python/.env:/app/.env                     # Configuration

Customization

Change ports - Edit docker-compose.yml:

services:
  frontend:
  ports:
    - "8080:80"  # Change to port 8080
  
  backend:
  ports:
    - "5001:5000"  # Change to port 5001

Configure HTTPS - Use a reverse proxy (like Caddy/Nginx):

# Using Caddy (automatic HTTPS)
caddy reverse-proxy --from yourdomain.com --to localhost:80

Production Recommendations

Security:

# Generate strong SECRET_KEY
openssl rand -hex 32

# Set secure admin password
ADMIN_PASSWORD=your-very-secure-password

Resource limits - Add to docker-compose.yml:

services:
  backend:
  deploy:
    resources:
    limits:
      cpus: '2'
      memory: 2G
    reservations:
      cpus: '0.5'
      memory: 512M

Log management:

services:
  backend:
  logging:
    driver: "json-file"
    options:
    max-size: "100m"
    max-file: "3"

Docker Troubleshooting

Frontend can't connect to backend:

docker-compose logs backend
curl http://localhost:5000/api/health

Database connection issues:

# Check PostgreSQL container status
docker-compose logs postgres

# Verify PostgreSQL is ready
docker exec quantdinger-db pg_isready -U quantdinger

# Connect to database manually
docker exec -it quantdinger-db psql -U quantdinger -d quantdinger

Build failures:

# Clear Docker cache and rebuild
docker-compose build --no-cache

Out of memory:

# Check memory usage
docker stats

# Add swap space (Linux)
sudo fallocate -l 2G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile

Updating

# Pull latest code
git pull

# Rebuild and restart
docker-compose up -d --build

Backup

# Backup PostgreSQL database
docker exec quantdinger-db pg_dump -U quantdinger quantdinger > backup/quantdinger_$(date +%Y%m%d).sql

# Backup configuration
cp backend_api_python/.env backup/.env_$(date +%Y%m%d)

# Restore database (if needed)
cat backup/quantdinger_YYYYMMDD.sql | docker exec -i quantdinger-db psql -U quantdinger quantdinger

Option 2: Local Development

Prerequisites

  • Python 3.10+ recommended
  • Node.js 16+ recommended
  • PostgreSQL 14+ installed and running

1. Setup PostgreSQL

# Create database and user
sudo -u postgres psql
CREATE DATABASE quantdinger;
CREATE USER quantdinger WITH ENCRYPTED PASSWORD 'your_password';
GRANT ALL PRIVILEGES ON DATABASE quantdinger TO quantdinger;
\q

# Initialize schema
psql -U quantdinger -d quantdinger -f backend_api_python/migrations/init.sql

2. Start the backend (Flask API)

cd backend_api_python
pip install -r requirements.txt
cp env.example .env   # Windows: copy env.example .env

Edit .env and set:

DATABASE_URL=postgresql://quantdinger:your_password@localhost:5432/quantdinger
SECRET_KEY=your-secret-key
ADMIN_USER=quantdinger
ADMIN_PASSWORD=123456

Then start:

python run.py

Backend will be available at http://localhost:5000.

2. Start the frontend (Vue UI)

cd quantdinger_vue
npm install
npm run serve

Frontend dev server runs at http://localhost:8000 and proxies /api/* to http://localhost:5000 (see quantdinger_vue/vue.config.js).


Configuration (.env)

Use backend_api_python/env.example as a template. Common settings include:

  • Auth: SECRET_KEY, ADMIN_USER, ADMIN_PASSWORD
  • Server: PYTHON_API_HOST, PYTHON_API_PORT, PYTHON_API_DEBUG
  • Database: DATABASE_URL (PostgreSQL connection string)
  • AI / LLM: OPENROUTER_API_KEY, OPENROUTER_MODEL, timeouts
  • Web search: SEARCH_PROVIDER, SEARCH_GOOGLE_*, SEARCH_BING_API_KEY
  • Proxy (optional): PROXY_PORT or PROXY_URL
  • Workers: ENABLE_PENDING_ORDER_WORKER, DISABLE_RESTORE_RUNNING_STRATEGIES

API

The backend provides REST endpoints for login, market data, indicators, backtesting, strategies, and AI analysis.

  • Health: GET /health (also supports GET /api/health for deployment probes)
  • Auth (frontend-compatible): POST /api/user/login, POST /api/user/logout, GET /api/user/info

For the full route list, see backend_api_python/app/routes/.


License

Licensed under the Apache License 2.0. See LICENSE.


🤝 Community & Support


💼 Commercial License & Sponsorship

QuantDinger is licensed under Apache License 2.0 (code). However, Apache 2.0 does NOT grant trademark rights. Our branding assets (name/logo) are protected as trademarks and are governed separately from the code license:

  • Copyright/Attribution: You must keep required copyright and license notices (including any NOTICE/attribution in the repo and in the UI where applicable).
  • Trademarks (Name/Logo/Branding): Without permission, you may not modify QuantDinger branding (name/logo/UI brand), or use it to imply endorsement or misrepresent origin. If you redistribute a modified version, you should remove QuantDinger branding and rebrand unless you have a commercial license.

If you need to keep/modify QuantDinger branding in a redistribution (including UI branding and logo usage), please contact us for a commercial license.

See: TRADEMARKS.md

What you get with a Commercial License

  • Commercial authorization to modify branding/copyright display as agreed
  • Operations support: deployment, upgrades, incident support, and maintenance guidance
  • Consulting services: architecture review, performance tuning, strategy workflow consulting
  • Sponsorship options: become a project sponsor and we can display your logo/ad (README/website/in-app placement as agreed)

Contact


💼 Trusted Exchange Partners (Affiliate Links)

By using our partner links, you support QuantDinger's development while enjoying the same trading experience.

Binance

World's Largest Crypto Exchange
Spot • Futures • Margin Trading
OKX

Leading Derivatives Platform
Spot • Perpetual • Options
Bitget

Innovative Copy Trading
Spot • Futures • Social Trading

💝 Direct Support (Donations)

Your contributions help us maintain and improve QuantDinger.

Crypto Donations (ERC-20 / BEP-20 / Polygon / Arbitrum)

0x96fa4962181bea077f8c7240efe46afbe73641a7

USDT ETH


Acknowledgements

QuantDinger stands on the shoulders of great open-source projects:

Project Description Link
Flask Lightweight WSGI web framework flask.palletsprojects.com
flask-cors Cross-Origin Resource Sharing extension GitHub
Pandas Data analysis and manipulation library pandas.pydata.org
CCXT Cryptocurrency exchange trading library github.com/ccxt/ccxt
yfinance Yahoo Finance market data downloader github.com/ranaroussi/yfinance
akshare China financial data interface github.com/akfamily/akshare
requests HTTP library for Python requests.readthedocs.io
Vue.js Progressive JavaScript framework vuejs.org
Ant Design Vue Enterprise-class UI components antdv.com
KlineCharts Lightweight financial charting library github.com/klinecharts/KLineChart
Lightweight Charts TradingView charting library github.com/nicepkg/lightweight-charts
ECharts Apache data visualization library echarts.apache.org

Thanks to all maintainers and contributors across these ecosystems! ❤️

About

Next-Gen AI Quantitative Trading Platform

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 36.8%
  • JavaScript 35.8%
  • Vue 26.9%
  • Less 0.5%
  • PowerShell 0.0%
  • Dockerfile 0.0%