-
server.py: Read tweets from the Twitter API or a file, write tweets to a file
-
test.json: Json file for testing
-
tweets.txt: Store the tweets in tweets.txt file
-
vocabulary_size.py: Compute the number of unique words
-
word_count.py: Compute frequencies of words and phrases
-
schema_postgres.sql: SQL Table Schema
-
server_postgres.py: Read tweets from the Twitter API or a file, write the information needed to compute the trendiness score to PostgreSQL
-
test.json: Json file for testing
-
trendiness_postgres.py: Compute the trendiness score
-
tweets.txt: Store the tweets in tweets.txt file
-
vocabulary_size_postgres.py: Compute the number of unique words in the current minute
-
word_count_postgres.py: Compute frequencies of words and phrases in the current minute
-
consumer.py: Kafka consumer file
-
server_from_kafka.py: Read tweets from Kafka, write the information needed to compute the trendiness score to PostgreSQL
-
server_to_kafka.py: Read tweets from the Twitter API or a file, write tweets to a Kafka queue
-
test.json: Json file for testing
-
trendiness_kafka.py: Continuously compute the most up-to-date trendiness score of a word/phrase
-
tweets.txt: Store the tweets in tweets.txt file