Skip to content

junderer/Algorithm_03

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

1. Model

MODEL 1 : 3 Layers with 1 Convolution layer


        model_1 = keras.models.Sequential([
                    keras.layers.Conv2D(32, (3,3), activation = 'relu', input_shape = (28, 28,1)),  # layer 1 
                    keras.layers.MaxPool2D((2,2)),                                                  # layer 2 
                    keras.layers.Flatten(),
                    keras.layers.Dense(10, activation = 'softmax')])                                # layer 3

2. Training with Training loss

Training Step

Training for 5 epochs.

model_1.fit(train_images, train_labels, epochs = 5)

epoch1

3. Test Accuracy

Perform Test with Test data

perform11

4. Images and corresponding probability that predicted Right

perform1

5. Images and corresponding probability that predicted Wrong

wrong1

1. Model

MODEL 2 : 5 Layers with 2 Convolution layer


         model_2 = keras.models.Sequential([
                    keras.layers.Conv2D(32, (3,3), activation = 'relu', input_shape=(28,28,1)),     # layer 1 
                    keras.layers.MaxPool2D((2,2)),                                                  # layer 2
                    keras.layers.Conv2D(64, (3,3), activation = 'relu'),                            # layer 3 
                    keras.layers.MaxPool2D((2,2)),                                                  # layer 4
                    keras.layers.Flatten(),
                    keras.layers.Dense(10, activation = 'softmax')])                                # layer 5

2. Training with Training loss

Training Step

Training for 5 epochs.

model_2.fit(train_images, train_labels, epochs = 5)

epoch2

3. Test Accuracy

Perform Test with Test data

perform2

4. Images and corresponding probability that predicted Right

right2

5. Images and corresponding probability that predicted Wrong

wrong2

1. Model

MODEL 3 : 7 Layers with 4 Convolution layer


     model_3 = keras.models.Sequential([
                    keras.layers.Conv2D(32, (3,3), activation = 'relu', input_shape = (28, 28,1)),  # layer 1
                    keras.layers.MaxPool2D((2,2)),                                                  # layer 2
                    keras.layers.Conv2D(64, (3,3), activation = 'relu'),                            # layer 3
                    keras.layers.Conv2D(64, (3,3), activation = 'relu'),                            # layer 4
                    keras.layers.MaxPool2D((2,2)),                                                  # layer 5
                    keras.layers.Conv2D(128, (3,3), activation = 'relu'),                           # layer 6
                    keras.layers.Flatten(),
                    keras.layers.Dense(10, activation = 'softmax')])   

2. Training with Training loss

Training Step

Training for 5 epochs.

model_3.fit(train_images, train_labels, epochs = 5)

epoch

3. Test Accuracy

Perform Test with Test data

perform3

4. Images and corresponding probability that predicted Right

predicted Right3

5. Images and corresponding probability that predicted Wrong

53

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published