model_1 = keras.models.Sequential([
keras.layers.Conv2D(32, (3,3), activation = 'relu', input_shape = (28, 28,1)), # layer 1
keras.layers.MaxPool2D((2,2)), # layer 2
keras.layers.Flatten(),
keras.layers.Dense(10, activation = 'softmax')]) # layer 3model_1.fit(train_images, train_labels, epochs = 5) model_2 = keras.models.Sequential([
keras.layers.Conv2D(32, (3,3), activation = 'relu', input_shape=(28,28,1)), # layer 1
keras.layers.MaxPool2D((2,2)), # layer 2
keras.layers.Conv2D(64, (3,3), activation = 'relu'), # layer 3
keras.layers.MaxPool2D((2,2)), # layer 4
keras.layers.Flatten(),
keras.layers.Dense(10, activation = 'softmax')]) # layer 5model_2.fit(train_images, train_labels, epochs = 5) model_3 = keras.models.Sequential([
keras.layers.Conv2D(32, (3,3), activation = 'relu', input_shape = (28, 28,1)), # layer 1
keras.layers.MaxPool2D((2,2)), # layer 2
keras.layers.Conv2D(64, (3,3), activation = 'relu'), # layer 3
keras.layers.Conv2D(64, (3,3), activation = 'relu'), # layer 4
keras.layers.MaxPool2D((2,2)), # layer 5
keras.layers.Conv2D(128, (3,3), activation = 'relu'), # layer 6
keras.layers.Flatten(),
keras.layers.Dense(10, activation = 'softmax')]) model_3.fit(train_images, train_labels, epochs = 5)