Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions keras_nlp/layers/transformer_decoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ def _build(self, input_shape):
self._enc_dec_attention_layernorm = keras.layers.LayerNormalization()
self._feedforward_layernorm = keras.layers.LayerNormalization()

self._self_attentiondropout = keras.layers.Dropout(rate=self.dropout)
self._self_attention_dropout = keras.layers.Dropout(rate=self.dropout)
self._enc_dec_attentiondropout = keras.layers.Dropout(
rate=self.dropout,
)
Expand All @@ -140,15 +140,15 @@ def _build(self, input_shape):
kernel_initializer=self.kernel_initializer,
bias_initializer=self.bias_initializer,
)
self._outputdropout = keras.layers.Dropout(rate=self.dropout)
self._output_dropout = keras.layers.Dropout(rate=self.dropout)

def _add_and_norm(self, input1, input2, norm_layer):
return norm_layer(input1 + input2)

def _feed_forward(self, input):
x = self._intermediate_dense(input)
x = self._output_dense(x)
return self._outputdropout(x)
return self._output_dropout(x)

def call(
self,
Expand Down Expand Up @@ -206,7 +206,7 @@ def call(
decoder_sequence,
attention_mask=decoder_mask,
)
self_attended = self._self_attentiondropout(self_attended)
self_attended = self._self_attention_dropout(self_attended)
self_attended = self._add_and_norm(
self_attended, decoder_sequence, self._decoder_attention_layernorm
)
Expand Down
8 changes: 4 additions & 4 deletions keras_nlp/layers/transformer_encoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,7 +107,7 @@ def _build(self, input_shape):
self._attention_layernorm = keras.layers.LayerNormalization()
self._feedforward_layernorm = keras.layers.LayerNormalization()

self._attentiondropout = keras.layers.Dropout(rate=self.dropout)
self._attention_dropout = keras.layers.Dropout(rate=self.dropout)

self._intermediate_dense = keras.layers.Dense(
self.intermediate_dim,
Expand All @@ -120,15 +120,15 @@ def _build(self, input_shape):
kernel_initializer=self.kernel_initializer,
bias_initializer=self.bias_initializer,
)
self._outputdropout = keras.layers.Dropout(rate=self.dropout)
self._output_dropout = keras.layers.Dropout(rate=self.dropout)

def _add_and_norm(self, input1, input2, norm_layer):
return norm_layer(input1 + input2)

def _feed_forward(self, input):
x = self._intermediate_dense(input)
x = self._output_dense(x)
return self._outputdropout(x)
return self._output_dropout(x)

def call(self, inputs, padding_mask=None, attention_mask=None):
"""Forward pass of the TransformerEncoder.
Expand Down Expand Up @@ -161,7 +161,7 @@ def call(self, inputs, padding_mask=None, attention_mask=None):
attended = self._multi_head_attention_layer(
inputs, inputs, inputs, attention_mask=mask
)
attended = self._attentiondropout(attended)
attended = self._attention_dropout(attended)
attended = self._add_and_norm(
inputs,
attended,
Expand Down