Skip to content
This repository was archived by the owner on Jan 5, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -11,16 +11,26 @@ open Topology Filter

noncomputable section

/- OMIT:
Elementary Integration
----------------------

OMIT. -/
/- TEXT:
.. index:: integration

.. _elementary_integration:

Elementary Integration
初等的な積分
----------------------

TEXT. -/
/- OMIT:
We first focus on integration of functions on finite intervals in ``ℝ``. We can integrate
elementary functions.
OMIT. -/
/- TEXT:
ここではまず, ``ℝ`` の有限区間上の関数の積分に焦点を当てます.Mathlibでは初等関数を積分できます.
EXAMPLES: -/
-- QUOTE:
open MeasureTheory intervalIntegral
Expand All @@ -35,13 +45,16 @@ example {a b : ℝ} (h : (0 : ℝ) ∉ [[a, b]]) : (∫ x in a..b, 1 / x) = Real
integral_one_div h
-- QUOTE.

/- TEXT:
/- OMIT:
The fundamental theorem of calculus relates integration and differentiation.
Below we give simplified statements of the two parts of this theorem. The first part
says that integration provides an inverse to differentiation and the second one
specifies how to compute integrals of derivatives.
(These two parts are very closely related, but their optimal versions,
which are not shown here, are not equivalent.)
OMIT. -/
/- TEXT:
微積分の基本定理は積分と微分に関するものです.以下では,この定理の2つの部分を簡単に説明します.最初の部分は,積分が微分の逆を提供するということを,2番目では微分の積分を計算する方法を与えるものです.(この2つの部分は非常に密接に関連していますが,ここでは示していない最適版では等価になりません.)
EXAMPLES: -/
-- QUOTE:
example (f : ℝ → ℝ) (hf : Continuous f) (a b : ℝ) : deriv (fun u ↦ ∫ x : ℝ in a..u, f x) b = f b :=
Expand All @@ -53,8 +66,11 @@ example {f : ℝ → ℝ} {a b : ℝ} {f' : ℝ → ℝ} (h : ∀ x ∈ [[a, b]]
integral_eq_sub_of_hasDerivAt h h'
-- QUOTE.

/- TEXT:
/- OMIT:
Convolution is also defined in Mathlib and its basic properties are proved.
OMIT. -/
/- TEXT:
畳み込みもまたMathlibで定義されており,その基本的な性質が証明されています.
EXAMPLES: -/
-- QUOTE:
open Convolution
Expand Down