Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/category_theory/concrete_category.lean
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ instance : has_coe_to_fun (X ⟶ Y) :=
{ F := λ f, X → Y,
coe := λ f, f.1 }

@[simp] lemma coe_id {X : bundled c} : ((𝟙 X) : X → X) = id := rfl
@[simp] lemma bundled_hom_coe {X Y : bundled c} (val : X → Y) (prop) (x : X) :
(⟨val, prop⟩ : X ⟶ Y) x = val x := rfl

Expand Down
7 changes: 7 additions & 0 deletions src/category_theory/eq_to_hom.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@

import category_theory.isomorphism
import category_theory.functor_category
import category_theory.opposites

universes v v' u u' -- declare the `v`'s first; see `category_theory.category` for an explanation

Expand Down Expand Up @@ -33,6 +34,12 @@ rfl
eq_to_iso p ≪≫ eq_to_iso q = eq_to_iso (p.trans q) :=
by ext; simp

@[simp] lemma eq_to_hom_op (X Y : C) (h : X = Y) : (eq_to_hom h).op = eq_to_hom (congr_arg op h.symm) :=
begin
cases h,
refl
end

variables {D : Sort u'} [𝒟 : category.{v'} D]
include 𝒟

Expand Down
1 change: 0 additions & 1 deletion src/category_theory/equivalence.lean
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@
-- Authors: Tim Baumann, Stephen Morgan, Scott Morrison

import category_theory.fully_faithful
import category_theory.functor_category
import category_theory.natural_isomorphism
import tactic.slice
import tactic.converter.interactive
Expand Down
1 change: 1 addition & 0 deletions src/category_theory/functor_category.lean
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@ section
@[simp] lemma id_app (F : C ⥤ D) (X : C) : (𝟙 F : F ⟶ F).app X = 𝟙 (F.obj X) := rfl
@[simp] lemma comp_app {F G H : C ⥤ D} (α : F ⟶ G) (β : G ⟶ H) (X : C) :
(α ≫ β).app X = α.app X ≫ β.app X := rfl

end

namespace nat_trans
Expand Down
7 changes: 6 additions & 1 deletion src/category_theory/natural_isomorphism.lean
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Tim Baumann, Stephen Morgan, Scott Morrison

import category_theory.isomorphism
import category_theory.functor_category
import category_theory.whiskering

Expand All @@ -27,6 +26,12 @@ def app {F G : C ⥤ D} (α : F ≅ G) (X : C) : F.obj X ≅ G.obj X :=
@[simp] lemma app_hom {F G : C ⥤ D} (α : F ≅ G) (X : C) : (app α X).hom = α.hom.app X := rfl
@[simp] lemma app_inv {F G : C ⥤ D} (α : F ≅ G) (X : C) : (app α X).inv = α.inv.app X := rfl

@[simp] lemma hom_inv_id_app {F G : C ⥤ D} (α : F ≅ G) (X : C) : α.hom.app X ≫ α.inv.app X = 𝟙 (F.obj X) :=
congr_fun (congr_arg nat_trans.app α.hom_inv_id) X

@[simp] lemma inv_hom_id_app {F G : C ⥤ D} (α : F ≅ G) (X : C) : α.inv.app X ≫ α.hom.app X = 𝟙 (G.obj X) :=
congr_fun (congr_arg nat_trans.app α.inv_hom_id) X

variables {F G : C ⥤ D}

instance hom_app_is_iso (α : F ≅ G) (X : C) : is_iso (α.hom.app X) :=
Expand Down
3 changes: 3 additions & 0 deletions src/category_theory/opposites.lean
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@

import category_theory.products
import category_theory.types
import category_theory.natural_isomorphism

namespace category_theory

Expand Down Expand Up @@ -98,6 +99,8 @@ instance category.opposite : category.{v₁} Cᵒᵖ :=
@[simp] lemma unop_comp {X Y Z : Cᵒᵖ} {f : X ⟶ Y} {g : Y ⟶ Z} :
(f ≫ g).unop = g.unop ≫ f.unop := rfl
@[simp] lemma unop_id {X : Cᵒᵖ} : (𝟙 X).unop = 𝟙 (unop X) := rfl
@[simp] lemma unop_id_op {X : C} : (𝟙 (op X)).unop = 𝟙 X := rfl
@[simp] lemma op_id_unop {X : Cᵒᵖ} : (𝟙 (unop X)).op = 𝟙 X := rfl

def op_op : (Cᵒᵖ)ᵒᵖ ⥤ C :=
{ obj := λ X, unop (unop X),
Expand Down