File tree Expand file tree Collapse file tree 2 files changed +5
-5
lines changed
Combinatorics/SimpleGraph Expand file tree Collapse file tree 2 files changed +5
-5
lines changed Original file line number Diff line number Diff line change @@ -190,8 +190,9 @@ theorem isTree_iff_existsUnique_path :
190190lemma IsTree.existsUnique_path (hG : G.IsTree) : ∀ v w, ∃! p : G.Walk v w, p.IsPath :=
191191 (isTree_iff_existsUnique_path.1 hG).2
192192
193- theorem IsAcyclic.isPath_iff_isChain [DecidableEq V] (hG : G.IsAcyclic) {v w : V} (p : G.Walk v w) :
193+ theorem IsAcyclic.isPath_iff_isChain (hG : G.IsAcyclic) {v w : V} (p : G.Walk v w) :
194194 p.IsPath ↔ List.IsChain (· ≠ ·) p.edges := by
195+ classical
195196 refine ⟨fun h ↦ (edges_nodup_of_support_nodup <| p.isPath_def.mp h).isChain, fun h ↦ ?_⟩
196197 induction p with
197198 | nil => simp
@@ -214,7 +215,7 @@ theorem IsAcyclic.isPath_iff_isChain [DecidableEq V] (hG : G.IsAcyclic) {v w : V
214215 have := IsPath.mk' this |>.eq_snd_of_mem_edges (by simp [head.ne.symm]) (Sym2.eq_swap ▸ hhh)
215216 simp [this, snd_takeUntil head.ne]
216217
217- theorem IsAcyclic.isPath_iff_isTrail [DecidableEq V] (hG : G.IsAcyclic) {v w : V} (p : G.Walk v w) :
218+ theorem IsAcyclic.isPath_iff_isTrail (hG : G.IsAcyclic) {v w : V} (p : G.Walk v w) :
218219 p.IsPath ↔ p.IsTrail :=
219220 ⟨IsPath.isTrail, fun h ↦ hG.isPath_iff_isChain p |>.mpr <| p.isTrail_def.mp h |>.isChain⟩
220221
Original file line number Diff line number Diff line change @@ -116,11 +116,10 @@ end EmbSigmaAdd
116116
117117section EmbSigmaSingle
118118
119- variable [Zero M] [DecidableEq κ] [∀ k, DecidableEq (ι k)]
120-
121119@[simp]
122- theorem embSigma_single {k : κ} (i : ι k) (m : M) :
120+ theorem embSigma_single [Zero M] {k : κ} (i : ι k) (m : M) :
123121 embSigma (single i m) = single ⟨k, i⟩ m := by
122+ classical
124123 ext ⟨k', j⟩
125124 by_cases hk : k' = k
126125 · subst hk
You can’t perform that action at this time.
0 commit comments