File tree Expand file tree Collapse file tree 2 files changed +34
-0
lines changed
Expand file tree Collapse file tree 2 files changed +34
-0
lines changed Original file line number Diff line number Diff line change @@ -556,6 +556,12 @@ theorem continuous_mk : Continuous (mk : X → SeparationQuotient X) :=
556556theorem mk_eq_mk : mk x = mk y ↔ (x ~ᵢ y) :=
557557 Quotient.eq''
558558
559+ protected theorem «forall » {P : SeparationQuotient X → Prop } : (∀ x, P x) ↔ ∀ x, P (.mk x) :=
560+ Quotient.forall
561+
562+ protected theorem «exists » {P : SeparationQuotient X → Prop } : (∃ x, P x) ↔ ∃ x, P (.mk x) :=
563+ Quotient.exists
564+
559565theorem surjective_mk : Surjective (mk : X → SeparationQuotient X) :=
560566 Quot.mk_surjective
561567
@@ -572,6 +578,19 @@ instance [Inhabited X] : Inhabited (SeparationQuotient X) :=
572578instance [Subsingleton X] : Subsingleton (SeparationQuotient X) :=
573579 surjective_mk.subsingleton
574580
581+ @[simp]
582+ theorem inseparableSetoid_eq_top_iff {t : TopologicalSpace α} :
583+ inseparableSetoid α = ⊤ ↔ t = ⊤ :=
584+ Setoid.eq_top_iff.trans TopologicalSpace.eq_top_iff_forall_inseparable.symm
585+
586+ theorem subsingleton_iff {t : TopologicalSpace α} :
587+ Subsingleton (SeparationQuotient α) ↔ t = ⊤ :=
588+ Quotient.subsingleton_iff.trans inseparableSetoid_eq_top_iff
589+
590+ theorem nontrivial_iff {t : TopologicalSpace α} :
591+ Nontrivial (SeparationQuotient α) ↔ t ≠ ⊤ := by
592+ simpa only [not_subsingleton_iff_nontrivial] using subsingleton_iff.not
593+
575594@[to_additive] instance [One X] : One (SeparationQuotient X) := ⟨mk 1 ⟩
576595
577596@ [to_additive (attr := simp)] theorem mk_one [One X] : mk (1 : X) = 1 := rfl
Original file line number Diff line number Diff line change @@ -618,6 +618,21 @@ theorem isOpen_sup {t₁ t₂ : TopologicalSpace α} {s : Set α} :
618618 IsOpen[t₁ ⊔ t₂] s ↔ IsOpen[t₁] s ∧ IsOpen[t₂] s :=
619619 Iff.rfl
620620
621+ /-- In the trivial topology no points are separable.
622+
623+ The corresponding `bot` lemma is handled more generally by `inseparable_iff_eq`. -/
624+ @[simp]
625+ theorem inseparable_top (x y : α) : @Inseparable α ⊤ x y := nhds_top.trans nhds_top.symm
626+
627+ theorem TopologicalSpace.eq_top_iff_forall_inseparable {t : TopologicalSpace α} :
628+ t = ⊤ ↔ (∀ x y : α, Inseparable x y) where
629+ mp h := h ▸ inseparable_top
630+ mpr h := ext_nhds fun x => nhds_top ▸ top_unique fun _ hs a => mem_of_mem_nhds <| h x a ▸ hs
631+
632+ theorem TopologicalSpace.ne_top_iff_exists_not_inseparable {t : TopologicalSpace α} :
633+ t ≠ ⊤ ↔ ∃ x y : α, ¬Inseparable x y := by
634+ simpa using eq_top_iff_forall_inseparable.not
635+
621636open TopologicalSpace
622637
623638variable {γ : Type *} {f : α → β} {ι : Sort *}
You can’t perform that action at this time.
0 commit comments