@@ -36,7 +36,7 @@ theorem _root_.Pi.lex_eq_finsupp_lex {r : α → α → Prop} {s : N → N → P
3636
3737theorem lex_def {r : α → α → Prop } {s : N → N → Prop } {a b : α →₀ N} :
3838 Finsupp.Lex r s a b ↔ ∃ j, (∀ d, r d j → a d = b d) ∧ s (a j) (b j) :=
39- Iff .rfl
39+ .rfl
4040
4141theorem lex_eq_invImage_dfinsupp_lex (r : α → α → Prop ) (s : N → N → Prop ) :
4242 Finsupp.Lex r s = InvImage (DFinsupp.Lex r fun _ ↦ s) toDFinsupp :=
@@ -46,11 +46,11 @@ instance [LT α] [LT N] : LT (Lex (α →₀ N)) :=
4646 ⟨fun f g ↦ Finsupp.Lex (· < ·) (· < ·) (ofLex f) (ofLex g)⟩
4747
4848theorem lex_lt_iff [LT α] [LT N] {a b : Lex (α →₀ N)} :
49- a < b ↔ ∃ i, (∀ j, j < i → ofLex a j = ofLex b j) ∧ ofLex a i < ofLex b i :=
50- Finsupp.lex_def
49+ a < b ↔ ∃ i, (∀ j, j < i → a j = b j) ∧ a i < b i :=
50+ .rfl
5151
5252theorem lex_lt_iff_of_unique [Preorder α] [LT N] [Unique α] {a b : Lex (α →₀ N)} :
53- a < b ↔ ofLex a default < ofLex b default := by
53+ a < b ↔ a default < b default := by
5454 simp only [lex_lt_iff, Unique.exists_iff, and_iff_right_iff_imp]
5555 refine fun _ j hj ↦ False.elim (lt_irrefl j ?_)
5656 simpa only [Unique.uniq] using hj
@@ -84,7 +84,7 @@ instance Lex.linearOrder [LinearOrder N] : LinearOrder (Lex (α →₀ N)) where
8484 le := (· ≤ ·)
8585 __ := LinearOrder.lift' (toLex ∘ toDFinsupp ∘ ofLex) finsuppEquivDFinsupp.injective
8686
87- theorem Lex.single_strictAnti : StrictAnti ( fun (a : α) ↦ toLex (single a 1 ) ) := by
87+ theorem Lex.single_strictAnti : StrictAnti fun (a : α) ↦ toLex (single a 1 ) := by
8888 intro a b h
8989 simp only [LT.lt, Finsupp.lex_def]
9090 simp only [ofLex_toLex, Nat.lt_eq]
@@ -100,20 +100,21 @@ theorem Lex.single_lt_iff {a b : α} : toLex (single b 1) < toLex (single a 1)
100100theorem Lex.single_le_iff {a b : α} : toLex (single b 1 ) ≤ toLex (single a 1 ) ↔ a ≤ b :=
101101 Lex.single_strictAnti.le_iff_ge
102102
103- theorem Lex.single_antitone : Antitone ( fun (a : α) ↦ toLex (single a 1 ) ) :=
103+ theorem Lex.single_antitone : Antitone fun (a : α) ↦ toLex (single a 1 ) :=
104104 Lex.single_strictAnti.antitone
105105
106106variable [PartialOrder N]
107107
108108theorem toLex_monotone : Monotone (@toLex (α →₀ N)) :=
109- fun a b h ↦ DFinsupp.toLex_monotone (id h : ∀ i, ofLex (toDFinsupp a) i ≤ ofLex (toDFinsupp b) i)
109+ fun a b h ↦ DFinsupp.toLex_monotone (id h : ∀ i, (toDFinsupp a) i ≤ (toDFinsupp b) i)
110110
111+ @[deprecated lex_lt_iff (since := "2025-10-12")]
111112theorem lt_of_forall_lt_of_lt (a b : Lex (α →₀ N)) (i : α) :
112113 (∀ j < i, ofLex a j = ofLex b j) → ofLex a i < ofLex b i → a < b :=
113114 fun h1 h2 ↦ ⟨i, h1, h2⟩
114115
115116theorem lex_le_iff_of_unique [Unique α] {a b : Lex (α →₀ N)} :
116- a ≤ b ↔ ofLex a default ≤ ofLex b default := by
117+ a ≤ b ↔ a default ≤ b default := by
117118 simp only [le_iff_eq_or_lt]
118119 apply or_congr _ lex_lt_iff_of_unique
119120 conv_lhs => rw [← toLex_ofLex a, ← toLex_ofLex b, toLex_inj]
@@ -151,7 +152,7 @@ variable [AddRightStrictMono N]
151152
152153instance Lex.addRightStrictMono : AddRightStrictMono (Lex (α →₀ N)) :=
153154 ⟨fun f _ _ ⟨a, lta, ha⟩ ↦
154- ⟨a, fun j ja ↦ congr_arg (· + ofLex f j) (lta j ja), add_lt_add_right ha _⟩⟩
155+ ⟨a, fun j ja ↦ congr_arg (· + f j) (lta j ja), add_lt_add_right ha _⟩⟩
155156
156157instance Lex.addRightMono : AddRightMono (Lex (α →₀ N)) :=
157158 addRightMono_of_addRightStrictMono _
0 commit comments