@@ -19,18 +19,18 @@ namespace Nat
1919
2020open Function
2121
22- theorem periodic_gcd (a : ℕ) : Periodic (gcd a) a := by
23- simp only [forall_const, gcd_add_self_right, Periodic]
22+ theorem periodic_gcd (a : ℕ) : Periodic (gcd a) a :=
23+ a. gcd_add_self_right
2424
25- theorem periodic_coprime (a : ℕ) : Periodic (Coprime a) a := by
26- simp only [coprime_add_self_right, forall_const, Periodic]
25+ theorem periodic_coprime (a : ℕ) : Periodic (Coprime a) a :=
26+ fun _ ↦ eq_iff_iff.mpr coprime_add_self_right
2727
28- theorem periodic_mod (a : ℕ) : Periodic (fun n => n % a) a := by
29- simp only [forall_const, add_mod_right, Periodic]
28+ theorem periodic_mod (a : ℕ) : Periodic (fun n => n % a) a :=
29+ ( add_mod_right · a)
3030
3131theorem _root_.Function.Periodic.map_mod_nat {α : Type *} {f : ℕ → α} {a : ℕ} (hf : Periodic f a) :
3232 ∀ n, f (n % a) = f n := fun n => by
33- conv_rhs => rw [← Nat .mod_add_div n a, mul_comm, ← Nat.nsmul_eq_mul, hf.nsmul]
33+ conv_rhs => rw [← n .mod_add_div a, mul_comm, ← Nat.nsmul_eq_mul, hf.nsmul]
3434
3535section Multiset
3636
@@ -44,7 +44,7 @@ theorem filter_multiset_Ico_card_eq_of_periodic (n a : ℕ) (p : ℕ → Prop) [
4444 multiset_Ico_map_mod n, ← map_count_True_eq_filter_card, ← map_count_True_eq_filter_card,
4545 map_map]
4646 congr; funext n
47- exact (Function.Periodic. map_mod_nat pp n).symm
47+ exact (pp. map_mod_nat n).symm
4848
4949end Multiset
5050
@@ -56,7 +56,7 @@ open Finset
5656equal to the number naturals below `a` for which `p a` is true. -/
5757theorem filter_Ico_card_eq_of_periodic (n a : ℕ) (p : ℕ → Prop ) [DecidablePred p]
5858 (pp : Periodic p a) : ((Ico n (n + a)).filter p).card = a.count p :=
59- filter_multiset_Ico_card_eq_of_periodic n a p pp
59+ n.filter_multiset_Ico_card_eq_of_periodic a p pp
6060
6161end Finset
6262
0 commit comments