Skip to content

Commit 27167ef

Browse files
committed
chore(TangentCone): fix a name (#34224)
Rename `zero_mem_tangentCone` to `zero_mem_tangentConeAt`.
1 parent be78628 commit 27167ef

File tree

2 files changed

+5
-2
lines changed

2 files changed

+5
-2
lines changed

β€ŽMathlib/Analysis/Calculus/TangentCone/Basic.leanβ€Ž

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -126,7 +126,7 @@ theorem tangentConeAt_closure : tangentConeAt π•œ (closure s) x = tangentConeAt
126126
(squeeze_zero' (.of_forall fun _ ↦ dist_nonneg) (hd'.mono fun _ ↦ le_of_lt) u_lim)⟩
127127

128128
/-- The tangent cone at a non-isolated point contains `0`. -/
129-
theorem zero_mem_tangentCone {s : Set E} {x : E} (hx : x ∈ closure s) :
129+
theorem zero_mem_tangentConeAt {s : Set E} {x : E} (hx : x ∈ closure s) :
130130
0 ∈ tangentConeAt π•œ s x := by
131131
/- Take a sequence `d n` tending to `0` such that `x + d n ∈ s`. Taking `c n` of the order
132132
of `1 / (d n) ^ (1/2)`, then `c n` tends to infinity, but `c n β€’ d n` tends to `0`. By definition,
@@ -157,6 +157,9 @@ theorem zero_mem_tangentCone {s : Set E} {x : E} (hx : x ∈ closure s) :
157157
refine squeeze_zero_norm Hle ?_
158158
simpa using tendsto_const_nhds.mul u_lim
159159

160+
@[deprecated (since := "2026-01-21")]
161+
alias zero_mem_tangentCone := zero_mem_tangentConeAt
162+
160163
/-- If `x` is not an accumulation point of `s`, then the tangent cone of `s` at `x`
161164
is a subset of `{0}`. -/
162165
theorem tangentConeAt_subset_zero (hx : Β¬AccPt x (π“Ÿ s)) : tangentConeAt π•œ s x βŠ† 0 := by

β€ŽMathlib/Analysis/Calculus/TangentCone/DimOne.leanβ€Ž

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ theorem tangentConeAt_eq_univ {s : Set π•œ} {x : π•œ} (hx : AccPt x (π“Ÿ s))
2727
apply eq_univ_iff_forall.2 (fun y ↦ ?_)
2828
-- first deal with the case of `0`, which has to be handled separately.
2929
rcases eq_or_ne y 0 with rfl | hy
30-
Β· exact zero_mem_tangentCone (mem_closure_iff_clusterPt.mpr hx.clusterPt)
30+
Β· exact zero_mem_tangentConeAt (mem_closure_iff_clusterPt.mpr hx.clusterPt)
3131
/- Assume now `y` is a fixed nonzero scalar. Take a sequence `d n` tending to `0` such
3232
that `x + d n ∈ s`. Let `c n = y / d n`. Then `β€–c nβ€–` tends to infinity, and `c n β€’ d n`
3333
converges to `y` (as it is equal to `y`). By definition, this shows that `y` belongs to the

0 commit comments

Comments
Β (0)