@@ -442,7 +442,6 @@ nonrec theorem smul_mem_nhds_smul_iff (hc : IsUnit c) {s : Set α} {a : α} :
442442
443443end IsUnit
444444
445- -- TODO: use `Set.Nonempty`
446445/-- Class `ProperlyDiscontinuousSMul Γ T` says that the scalar multiplication `(•) : Γ → T → T`
447446is properly discontinuous, that is, for any pair of compact sets `K, L` in `T`, only finitely many
448447`γ:Γ` move `K` to have nontrivial intersection with `L`.
@@ -451,7 +450,7 @@ class ProperlyDiscontinuousSMul (Γ : Type*) (T : Type*) [TopologicalSpace T] [S
451450 Prop where
452451 /-- Given two compact sets `K` and `L`, `γ • K ∩ L` is nonempty for finitely many `γ`. -/
453452 finite_disjoint_inter_image :
454- ∀ {K L : Set T}, IsCompact K → IsCompact L → Set.Finite { γ : Γ | (γ • ·) '' K ∩ L ≠ ∅ }
453+ ∀ {K L : Set T}, IsCompact K → IsCompact L → Set.Finite { γ : Γ | (( γ • ·) '' K ∩ L).Nonempty }
455454
456455/-- Class `ProperlyDiscontinuousVAdd Γ T` says that the additive action `(+ᵥ) : Γ → T → T`
457456is properly discontinuous, that is, for any pair of compact sets `K, L` in `T`, only finitely many
@@ -461,20 +460,20 @@ class ProperlyDiscontinuousVAdd (Γ : Type*) (T : Type*) [TopologicalSpace T] [V
461460 Prop where
462461 /-- Given two compact sets `K` and `L`, `γ +ᵥ K ∩ L` is nonempty for finitely many `γ`. -/
463462 finite_disjoint_inter_image :
464- ∀ {K L : Set T}, IsCompact K → IsCompact L → Set.Finite { γ : Γ | (γ +ᵥ ·) '' K ∩ L ≠ ∅ }
463+ ∀ {K L : Set T}, IsCompact K → IsCompact L → Set.Finite { γ : Γ | (( γ +ᵥ ·) '' K ∩ L).Nonempty }
465464
466465attribute [to_additive] ProperlyDiscontinuousSMul
467466
467+ export ProperlyDiscontinuousSMul (finite_disjoint_inter_image)
468+ export ProperlyDiscontinuousVAdd (finite_disjoint_inter_image)
469+
468470variable {Γ : Type *} [Group Γ] {T : Type *} [TopologicalSpace T] [MulAction Γ T]
469471
470472/-- A finite group action is always properly discontinuous. -/
471473@[to_additive /-- A finite group action is always properly discontinuous. -/]
472474instance (priority := 100 ) Finite.to_properlyDiscontinuousSMul [Finite Γ] :
473475 ProperlyDiscontinuousSMul Γ T where finite_disjoint_inter_image _ _ := Set.toFinite _
474476
475- export ProperlyDiscontinuousSMul (finite_disjoint_inter_image)
476- export ProperlyDiscontinuousVAdd (finite_disjoint_inter_image)
477-
478477/-- The quotient map by a group action is open, i.e. the quotient by a group action is an open
479478 quotient. -/
480479@[to_additive /-- The quotient map by a group action is open, i.e. the quotient by a group
@@ -506,7 +505,7 @@ instance (priority := 100) t2Space_of_properlyDiscontinuousSMul_of_t2Space [T2Sp
506505 have hγx₀y₀ : ∀ γ : Γ, γ • x₀ ≠ y₀ := not_exists.mp (mt Quotient.sound hxy.symm :)
507506 obtain ⟨K₀, hK₀, K₀_in⟩ := exists_compact_mem_nhds x₀
508507 obtain ⟨L₀, hL₀, L₀_in⟩ := exists_compact_mem_nhds y₀
509- let bad_Γ_set := { γ : Γ | (γ • ·) '' K₀ ∩ L₀ ≠ ∅ }
508+ let bad_Γ_set := { γ : Γ | (( γ • ·) '' K₀ ∩ L₀).Nonempty }
510509 have bad_Γ_finite : bad_Γ_set.Finite := finite_disjoint_inter_image (Γ := Γ) hK₀ hL₀
511510 choose u v hu hv u_v_disjoint using fun γ => t2_separation_nhds (hγx₀y₀ γ)
512511 let U₀₀ := ⋂ γ ∈ bad_Γ_set, (γ • ·) ⁻¹' u γ
@@ -523,7 +522,7 @@ instance (priority := 100) t2Space_of_properlyDiscontinuousSMul_of_t2Space [T2Sp
523522 by_cases H : γ ∈ bad_Γ_set
524523 · exact fun h => (u_v_disjoint γ).le_bot ⟨mem_iInter₂.mp x_in_U₀₀ γ H, mem_iInter₂.mp h.1 γ H⟩
525524 · rintro ⟨-, h'⟩
526- simp only [bad_Γ_set, image_smul, Classical.not_not , mem_setOf_eq, Ne ] at H
525+ simp only [bad_Γ_set, image_smul, not_nonempty_iff_eq_empty , mem_setOf_eq] at H
527526 exact eq_empty_iff_forall_notMem.mp H (γ • x) ⟨mem_image_of_mem _ x_in_K₀, h'⟩
528527
529528/-- The quotient of a second countable space by a group action is second countable. -/
0 commit comments