Skip to content

Commit 419405a

Browse files
committed
chore(Topology): fix whitespace (#32963)
Found by extending the commandStart linter to proof bodies.
1 parent 7fab516 commit 419405a

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

62 files changed

+103
-105
lines changed

Mathlib/Topology/Algebra/Algebra.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -146,7 +146,7 @@ instance : AlgHomClass (A →A[R] B) R A B where
146146
theorem toAlgHom_eq_coe (f : A →A[R] B) : f.toAlgHom = f := rfl
147147

148148
@[simp, norm_cast]
149-
theorem coe_inj {f g : A →A[R] B} : (f : A →ₐ[R] B) = g ↔ f = g := by
149+
theorem coe_inj {f g : A →A[R] B} : (f : A →ₐ[R] B) = g ↔ f = g := by
150150
cases f; cases g; simp only [mk.injEq]; exact Eq.congr_right rfl
151151

152152
@[simp]
@@ -294,14 +294,14 @@ theorem one_def : (1 : A →A[R] A) = ContinuousAlgHom.id R A := rfl
294294
theorem id_apply (x : A) : ContinuousAlgHom.id R A x = x := rfl
295295

296296
@[simp, norm_cast]
297-
theorem coe_id : ((ContinuousAlgHom.id R A) : A →ₐ[R] A) = AlgHom.id R A:= rfl
297+
theorem coe_id : ((ContinuousAlgHom.id R A) : A →ₐ[R] A) = AlgHom.id R A := rfl
298298

299299
@[simp, norm_cast]
300-
theorem coe_id' : ⇑(ContinuousAlgHom.id R A ) = _root_.id := rfl
300+
theorem coe_id' : ⇑(ContinuousAlgHom.id R A) = _root_.id := rfl
301301

302302
@[simp, norm_cast]
303303
theorem coe_eq_id {f : A →A[R] A} :
304-
(f : A →ₐ[R] A) = AlgHom.id R A ↔ f = ContinuousAlgHom.id R A:= by
304+
(f : A →ₐ[R] A) = AlgHom.id R A ↔ f = ContinuousAlgHom.id R A := by
305305
rw [← coe_id, coe_inj]
306306

307307
@[simp]
@@ -490,11 +490,11 @@ theorem coe_codRestrict_apply (f : A →A[R] B) (p : Subalgebra R B) (h : ∀ x,
490490
/-- Restrict the codomain of a continuous algebra homomorphism `f` to `f.range`. -/
491491
@[reducible]
492492
def rangeRestrict (f : A →A[R] B) :=
493-
f.codRestrict (@AlgHom.range R A B _ _ _ _ _ f) (@AlgHom.mem_range_self R A B _ _ _ _ _ f)
493+
f.codRestrict (@AlgHom.range R A B _ _ _ _ _ f) (@AlgHom.mem_range_self R A B _ _ _ _ _ f)
494494

495495
@[simp]
496496
theorem coe_rangeRestrict (f : A →A[R] B) :
497-
(f.rangeRestrict : A →ₐ[R] (@AlgHom.range R A B _ _ _ _ _ f)) =
497+
(f.rangeRestrict : A →ₐ[R] (@AlgHom.range R A B _ _ _ _ _ f)) =
498498
(f : A →ₐ[R] B).rangeRestrict :=
499499
rfl
500500

Mathlib/Topology/Algebra/AsymptoticCone.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -369,13 +369,13 @@ of direction `v` starting from `p` is contained in `s`. -/
369369
theorem Convex.smul_vadd_mem_of_mem_nhds_of_mem_asymptoticCone {c : k} {v p : V}
370370
(hs : Convex k s) (hc : 0 ≤ c) (hp : s ∈ 𝓝 p) (hv : v ∈ asymptoticCone k s) :
371371
c • v +ᵥ p ∈ s := by
372-
rw [mem_asymptoticCone_iff, asymptoticNhds_eq_smul_vadd v (c • v +ᵥ p), vadd_pure,
372+
rw [mem_asymptoticCone_iff, asymptoticNhds_eq_smul_vadd v (c • v +ᵥ p), vadd_pure,
373373
frequently_map, ← map₂_smul, ← map_prod_eq_map₂, frequently_map] at hv
374374
refine frequently_const.mp (hv.mp ?_)
375-
have : Tendsto (fun u => - (c • u : V) +ᵥ c • v +ᵥ p) (𝓝 v) (𝓝 p) :=
375+
have : Tendsto (fun u => -(c • u : V) +ᵥ c • v +ᵥ p) (𝓝 v) (𝓝 p) :=
376376
Continuous.tendsto' (by fun_prop) _ _ (by simp)
377377
filter_upwards [tendsto_fst.eventually <| eventually_gt_atTop 0, this.comp tendsto_snd hp]
378-
with ⟨t, u⟩ (ht : 0 < t) (hu : - (c • u) +ᵥ c • v +ᵥ p ∈ s) (h : t • u +ᵥ c • v +ᵥ p ∈ s)
378+
with ⟨t, u⟩ (ht : 0 < t) (hu : -(c • u) +ᵥ c • v +ᵥ p ∈ s) (h : t • u +ᵥ c • v +ᵥ p ∈ s)
379379
apply hs.segment_subset hu h
380380
simp_rw [mem_segment_iff_sameRay, ← vsub_eq_sub]
381381
rw [vsub_vadd_eq_vsub_sub, vsub_self, zero_sub, neg_neg, vadd_vsub]

Mathlib/Topology/Algebra/Category/ProfiniteGrp/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -209,7 +209,7 @@ abbrev ofProfinite (G : Profinite) [Group G] [IsTopologicalGroup G] :
209209
profinite additive group. -/]
210210
def pi {α : Type u} (β : α → ProfiniteGrp) : ProfiniteGrp :=
211211
let pitype := Profinite.pi fun (a : α) => (β a).toProfinite
212-
letI (a : α): Group (β a).toProfinite := (β a).group
212+
letI (a : α) : Group (β a).toProfinite := (β a).group
213213
letI : Group pitype := Pi.group
214214
letI : IsTopologicalGroup pitype := Pi.topologicalGroup
215215
ofProfinite pitype

Mathlib/Topology/Algebra/Field.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -160,7 +160,7 @@ open Topology
160160

161161
theorem IsLocalMin.inv {f : α → β} {a : α} (h1 : IsLocalMin f a) (h2 : ∀ᶠ z in 𝓝 a, 0 < f z) :
162162
IsLocalMax f⁻¹ a := by
163-
filter_upwards [h1, h2] with z h3 h4 using(inv_le_inv₀ h4 h2.self_of_nhds).mpr h3
163+
filter_upwards [h1, h2] with z h3 h4 using (inv_le_inv₀ h4 h2.self_of_nhds).mpr h3
164164

165165
end LocalExtr
166166

Mathlib/Topology/Algebra/InfiniteSum/ConditionalInt.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ lemma symmetricIcc_eq_symmetricIoo_int : symmetricIcc ℤ = symmetricIoo ℤ :=
118118
simp only [← Nat.map_cast_int_atTop, Filter.map_map, Filter.mem_map, mem_atTop_sets, ge_iff_le,
119119
Set.mem_preimage, comp_apply]
120120
refine ⟨fun ⟨a, ha⟩ ↦ ⟨a + 1, fun b hb ↦ ?_⟩, fun ⟨a, ha⟩ ↦ ⟨a - 1, fun b hb ↦ ?_⟩⟩ <;>
121-
[ convert ha (b - 1) (by grind) using 1; convert ha (b + 1) (by grind) using 1 ] <;>
121+
[convert ha (b - 1) (by grind) using 1; convert ha (b + 1) (by grind) using 1] <;>
122122
simpa [Finset.ext_iff] using by grind
123123

124124
@[to_additive]

Mathlib/Topology/Algebra/InfiniteSum/Constructions.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -320,7 +320,7 @@ theorem hasSum_unop {f : β → αᵐᵒᵖ} {a : αᵐᵒᵖ} :
320320
⟨HasSum.op, HasSum.unop⟩
321321

322322
@[simp]
323-
theorem summable_op : (Summable (fun a ↦ op (f a)) L) ↔ Summable f L:=
323+
theorem summable_op : (Summable (fun a ↦ op (f a)) L) ↔ Summable f L :=
324324
⟨Summable.unop, Summable.op⟩
325325

326326
theorem summable_unop {f : β → αᵐᵒᵖ} : (Summable (fun a ↦ unop (f a)) L) ↔ Summable f L :=

Mathlib/Topology/Algebra/InfiniteSum/Group.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ theorem Multipliable.of_inv (hf : Multipliable (fun b ↦ (f b)⁻¹) L) : Multi
4646
simpa only [inv_inv] using hf.inv
4747

4848
@[to_additive]
49-
theorem multipliable_inv_iff : (Multipliable (fun b ↦ (f b)⁻¹) L) ↔ Multipliable f L:=
49+
theorem multipliable_inv_iff : (Multipliable (fun b ↦ (f b)⁻¹) L) ↔ Multipliable f L :=
5050
⟨Multipliable.of_inv, Multipliable.inv⟩
5151

5252
@[to_additive]

Mathlib/Topology/Algebra/InfiniteSum/Module.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ protected theorem ContinuousLinearMap.hasSum {f : ι → M} (φ : M →SL[σ] M
125125
alias HasSum.mapL := ContinuousLinearMap.hasSum
126126

127127
protected theorem ContinuousLinearMap.summable {f : ι → M} (φ : M →SL[σ] M₂) (hf : Summable f L) :
128-
Summable (fun b : ι ↦ φ (f b)) L:=
128+
Summable (fun b : ι ↦ φ (f b)) L :=
129129
(hf.hasSum.mapL φ).summable
130130

131131
alias Summable.mapL := ContinuousLinearMap.summable

Mathlib/Topology/Algebra/InfiniteSum/Ring.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -84,7 +84,7 @@ theorem HasSum.div_const (h : HasSum f a L) (b : α) : HasSum (fun i ↦ f i / b
8484
theorem Summable.div_const (h : Summable f L) (b : α) : Summable (fun i ↦ f i / b) L :=
8585
(h.hasSum.div_const _).summable
8686

87-
theorem hasSum_mul_left_iff (h : a₂ ≠ 0) : HasSum (fun i ↦ a₂ * f i) (a₂ * a₁) L ↔ HasSum f a₁ L:=
87+
theorem hasSum_mul_left_iff (h : a₂ ≠ 0) : HasSum (fun i ↦ a₂ * f i) (a₂ * a₁) L ↔ HasSum f a₁ L :=
8888
fun H ↦ by simpa only [inv_mul_cancel_left₀ h] using H.mul_left a₂⁻¹, HasSum.mul_left _⟩
8989

9090
theorem hasSum_mul_right_iff (h : a₂ ≠ 0) : HasSum (fun i ↦ f i * a₂) (a₁ * a₂) L ↔ HasSum f a₁ L :=
@@ -97,7 +97,7 @@ theorem hasSum_div_const_iff (h : a₂ ≠ 0) :
9797
theorem summable_mul_left_iff (h : a ≠ 0) : (Summable (fun i ↦ a * f i) L) ↔ Summable f L :=
9898
fun H ↦ by simpa only [inv_mul_cancel_left₀ h] using H.mul_left a⁻¹, fun H ↦ H.mul_left _⟩
9999

100-
theorem summable_mul_right_iff (h : a ≠ 0) : (Summable (fun i ↦ f i * a) L) ↔ Summable f L:=
100+
theorem summable_mul_right_iff (h : a ≠ 0) : (Summable (fun i ↦ f i * a) L) ↔ Summable f L :=
101101
fun H ↦ by simpa only [mul_inv_cancel_right₀ h] using H.mul_right a⁻¹, fun H ↦ H.mul_right _⟩
102102

103103
theorem summable_div_const_iff (h : a ≠ 0) : (Summable (fun i ↦ f i / a) L) ↔ Summable f L := by
@@ -129,7 +129,7 @@ theorem Summable.const_div (h : Summable (fun x ↦ 1 / f x) L) (b : α) :
129129
(h.hasSum.const_div b).summable
130130

131131
theorem hasSum_const_div_iff (h : a₂ ≠ 0) :
132-
HasSum (fun i ↦ a₂ / f i) (a₂ * a₁) L ↔ HasSum (1/ f) a₁ L := by
132+
HasSum (fun i ↦ a₂ / f i) (a₂ * a₁) L ↔ HasSum (1 / f) a₁ L := by
133133
simpa only [div_eq_mul_inv, one_mul] using hasSum_mul_left_iff h
134134

135135
theorem summable_const_div_iff (h : a ≠ 0) :

Mathlib/Topology/Algebra/InfiniteSum/TsumUniformlyOn.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ section UniformlyOn
3333
variable {α β F : Type*} [NormedAddCommGroup F] [CompleteSpace F] {u : α → ℝ}
3434

3535
theorem HasSumUniformlyOn.of_norm_le_summable {f : α → β → F} (hu : Summable u) {s : Set β}
36-
(hfu : ∀ n x, x ∈ s → ‖f n x‖ ≤ u n) : HasSumUniformlyOn f (fun x ↦ ∑' n, f n x) s := by
36+
(hfu : ∀ n x, x ∈ s → ‖f n x‖ ≤ u n) : HasSumUniformlyOn f (fun x ↦ ∑' n, f n x) s := by
3737
simp [hasSumUniformlyOn_iff_tendstoUniformlyOn, tendstoUniformlyOn_tsum hu hfu]
3838

3939
theorem HasSumUniformlyOn.of_norm_le_summable_eventually {ι : Type*} {f : ι → β → F} {u : ι → ℝ}
@@ -101,7 +101,7 @@ theorem iteratedDerivWithin_tsum {f : ι → 𝕜 → F} (m : ℕ) (hs : IsOpen
101101
| zero => simp
102102
| succ m hm =>
103103
simp_rw [iteratedDerivWithin_succ]
104-
rw [← derivWithin_tsum hs hx _ _ (fun n r hr ↦ hf2 n m r (by lia) hr)]
104+
rw [← derivWithin_tsum hs hx _ _ (fun n r hr ↦ hf2 n m r (by lia) hr)]
105105
· exact derivWithin_congr (fun t ht ↦ hm ht (fun k hk1 hkm ↦ h k hk1 (by lia))
106106
(fun k r e hr he ↦ hf2 k r e (by lia) he)) (hm hx (fun k hk1 hkm ↦ h k hk1 (by lia))
107107
(fun k r e hr he ↦ hf2 k r e (by lia) he))

0 commit comments

Comments
 (0)