@@ -146,7 +146,7 @@ instance : AlgHomClass (A →A[R] B) R A B where
146146theorem toAlgHom_eq_coe (f : A →A[R] B) : f.toAlgHom = f := rfl
147147
148148@ [simp, norm_cast]
149- theorem coe_inj {f g : A →A[R] B} : (f : A →ₐ[R] B) = g ↔ f = g := by
149+ theorem coe_inj {f g : A →A[R] B} : (f : A →ₐ[R] B) = g ↔ f = g := by
150150 cases f; cases g; simp only [mk.injEq]; exact Eq.congr_right rfl
151151
152152@[simp]
@@ -294,14 +294,14 @@ theorem one_def : (1 : A →A[R] A) = ContinuousAlgHom.id R A := rfl
294294theorem id_apply (x : A) : ContinuousAlgHom.id R A x = x := rfl
295295
296296@ [simp, norm_cast]
297- theorem coe_id : ((ContinuousAlgHom.id R A) : A →ₐ[R] A) = AlgHom.id R A:= rfl
297+ theorem coe_id : ((ContinuousAlgHom.id R A) : A →ₐ[R] A) = AlgHom.id R A := rfl
298298
299299@ [simp, norm_cast]
300- theorem coe_id' : ⇑(ContinuousAlgHom.id R A ) = _root_.id := rfl
300+ theorem coe_id' : ⇑(ContinuousAlgHom.id R A) = _root_.id := rfl
301301
302302@ [simp, norm_cast]
303303theorem coe_eq_id {f : A →A[R] A} :
304- (f : A →ₐ[R] A) = AlgHom.id R A ↔ f = ContinuousAlgHom.id R A:= by
304+ (f : A →ₐ[R] A) = AlgHom.id R A ↔ f = ContinuousAlgHom.id R A := by
305305 rw [← coe_id, coe_inj]
306306
307307@[simp]
@@ -490,11 +490,11 @@ theorem coe_codRestrict_apply (f : A →A[R] B) (p : Subalgebra R B) (h : ∀ x,
490490/-- Restrict the codomain of a continuous algebra homomorphism `f` to `f.range`. -/
491491@[reducible]
492492def rangeRestrict (f : A →A[R] B) :=
493- f.codRestrict (@AlgHom.range R A B _ _ _ _ _ f) (@AlgHom.mem_range_self R A B _ _ _ _ _ f)
493+ f.codRestrict (@AlgHom.range R A B _ _ _ _ _ f) (@AlgHom.mem_range_self R A B _ _ _ _ _ f)
494494
495495@[simp]
496496theorem coe_rangeRestrict (f : A →A[R] B) :
497- (f.rangeRestrict : A →ₐ[R] (@AlgHom.range R A B _ _ _ _ _ f)) =
497+ (f.rangeRestrict : A →ₐ[R] (@AlgHom.range R A B _ _ _ _ _ f)) =
498498 (f : A →ₐ[R] B).rangeRestrict :=
499499 rfl
500500
0 commit comments