@@ -98,12 +98,16 @@ def implicitFunctionData (h : IsContDiffImplicitAt n f f' a) :
9898 exact ⟨(0 , y), by simp, x - (0 , y), by simp [map_sub, ← hy], by abel⟩
9999
100100@[simp]
101- lemma implicitFunctionData_leftFun_pt (h : IsContDiffImplicitAt n f f' a) :
102- h.implicitFunctionData.leftFun h.implicitFunctionData. pt = a. 1 := rfl
101+ lemma implicitFunctionData_pt (h : IsContDiffImplicitAt n f f' a) :
102+ h.implicitFunctionData.pt = a := rfl
103103
104104@[simp]
105- lemma implicitFunctionData_rightFun_pt (h : IsContDiffImplicitAt n f f' a) :
106- h.implicitFunctionData.rightFun h.implicitFunctionData.pt = f a := rfl
105+ lemma implicitFunctionData_leftFun_apply {h : IsContDiffImplicitAt n f f' a} {xy : E × F} :
106+ h.implicitFunctionData.leftFun xy = xy.1 := rfl
107+
108+ @[simp]
109+ lemma implicitFunctionData_rightFun_apply {h : IsContDiffImplicitAt n f f' a} {xy : E × F} :
110+ h.implicitFunctionData.rightFun xy = f xy := rfl
107111
108112/-- The implicit function provided by the general theorem, from which we construct the more useful
109113form `IsContDiffImplicitAt.implicitFunction`. -/
@@ -126,6 +130,10 @@ lemma implicitFunction_def (h : IsContDiffImplicitAt n f f' a) :
126130 h.implicitFunction = fun x ↦ (h.implicitFunctionData.implicitFunction.uncurry (x, f a)).2 :=
127131 rfl
128132
133+ @[simp]
134+ lemma implicitFunction_apply (h : IsContDiffImplicitAt n f f' a) (x : E) :
135+ h.implicitFunction x = (h.implicitFunctionData.implicitFunction x (f a)).2 := rfl
136+
129137/-- `implicitFunction` is indeed the (local) implicit function defined by `f`. -/
130138lemma apply_implicitFunction (h : IsContDiffImplicitAt n f f' a) :
131139 ∀ᶠ x in 𝓝 a.1 , f (x, h.implicitFunction x) = f a := by
@@ -142,6 +150,11 @@ lemma apply_implicitFunction (h : IsContDiffImplicitAt n f f' a) :
142150 · rw [h1]
143151 · rfl
144152
153+ theorem eventually_implicitFunction_apply_eq (h : IsContDiffImplicitAt n f f' a) :
154+ ∀ᶠ xy in 𝓝 a, f xy = f a → h.implicitFunction xy.1 = xy.2 := by
155+ refine h.implicitFunctionData.implicitFunction_apply_image.mono fun xy h₁ h₂ ↦ ?_
156+ simp_all
157+
145158/-- If the implicit equation `f` is $C^n$ at `(x, y)`, then its implicit function `φ` around `x` is
146159also $C^n$ at `x`. -/
147160theorem contDiffAt_implicitFunction (h : IsContDiffImplicitAt n f f' a) :
0 commit comments