@@ -9,8 +9,7 @@ public import Mathlib.Data.ENNReal.Real
99public import Mathlib.Tactic.Bound.Attribute
1010public import Mathlib.Topology.EMetricSpace.Basic
1111public import Mathlib.Topology.MetricSpace.Pseudo.Defs
12-
13- import Mathlib.Topology.Metrizable.Basic
12+ public import Mathlib.Topology.Metrizable.Basic
1413
1514/-!
1615## Pseudo-metric spaces
@@ -205,23 +204,28 @@ end Real
205204namespace Topology
206205
207206/-- The preimage of a separable set by an inducing map is separable. -/
208- protected lemma IsInducing.isSeparable_preimage {f : β → α} [TopologicalSpace β]
207+ protected lemma IsInducing.isSeparable_preimage {α : Type *} [TopologicalSpace α]
208+ [PseudoMetrizableSpace α] {f : β → α} [TopologicalSpace β]
209209 (hf : IsInducing f) {s : Set α} (hs : IsSeparable s) : IsSeparable (f ⁻¹' s) := by
210+ letI : UniformSpace α := TopologicalSpace.pseudoMetrizableSpaceUniformity α
211+ have := pseudoMetrizableSpaceUniformity_countably_generated
210212 have : SeparableSpace s := hs.separableSpace
211213 have : SecondCountableTopology s := UniformSpace.secondCountable_of_separable _
212214 have : IsInducing ((mapsTo_preimage f s).restrict _ _ _) :=
213215 (hf.comp IsInducing.subtypeVal).codRestrict _
214216 have := this.secondCountableTopology
215217 exact .of_subtype _
216218
217- protected theorem IsEmbedding.isSeparable_preimage {f : β → α} [TopologicalSpace β]
219+ protected theorem IsEmbedding.isSeparable_preimage {α : Type *} [TopologicalSpace α]
220+ [PseudoMetrizableSpace α] {f : β → α} [TopologicalSpace β]
218221 (hf : IsEmbedding f) {s : Set α} (hs : IsSeparable s) : IsSeparable (f ⁻¹' s) :=
219222 hf.isInducing.isSeparable_preimage hs
220223
221224end Topology
222225
223226/-- A compact set is separable. -/
224- theorem IsCompact.isSeparable {s : Set α} (hs : IsCompact s) : IsSeparable s :=
227+ theorem IsCompact.isSeparable {α : Type *} [TopologicalSpace α] [PseudoMetrizableSpace α]
228+ {s : Set α} (hs : IsCompact s) : IsSeparable s :=
225229 haveI : CompactSpace s := isCompact_iff_compactSpace.mp hs
226230 .of_subtype s
227231
@@ -270,7 +274,8 @@ lemma exists_finite_cover_balls_of_isCompact_closure (hs : IsCompact (closure s)
270274end Compact
271275
272276/-- If a map is continuous on a separable set `s`, then the image of `s` is also separable. -/
273- theorem ContinuousOn.isSeparable_image [TopologicalSpace β] {f : α → β} {s : Set α}
277+ theorem ContinuousOn.isSeparable_image {α : Type *} [TopologicalSpace α] [PseudoMetrizableSpace α]
278+ [TopologicalSpace β] {f : α → β} {s : Set α}
274279 (hf : ContinuousOn f s) (hs : IsSeparable s) : IsSeparable (f '' s) := by
275280 rw [image_eq_range, ← image_univ]
276281 exact (isSeparable_univ_iff.2 hs.separableSpace).image hf.restrict
0 commit comments