Skip to content

Commit 4be5c68

Browse files
committed
feat(Analysis/TemperedDistribution): the Fourier transform on tempered distributions extends the FT on Schwartz space (#33232)
We add some lemmas about self-adjointness of the Fourier transform for convenience and prove that the Fourier transform (and inverse Fourier transform) on tempered distributions is an extension of the Fourier transform on Schwartz functions.
1 parent e7c6ce1 commit 4be5c68

File tree

2 files changed

+30
-0
lines changed

2 files changed

+30
-0
lines changed

Mathlib/Analysis/Distribution/FourierSchwartz.lean

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -158,6 +158,7 @@ variable
158158
variable [CompleteSpace E] [CompleteSpace F]
159159

160160
/-- The Fourier transform satisfies `∫ 𝓕 f * g = ∫ f * 𝓕 g`, i.e., it is self-adjoint.
161+
161162
Version where the multiplication is replaced by a general bilinear form `M`. -/
162163
theorem integral_bilin_fourier_eq (f : 𝓢(V, E)) (g : 𝓢(V, F)) (M : E →L[ℂ] F →L[ℂ] G) :
163164
∫ ξ, M (𝓕 f ξ) (g ξ) = ∫ x, M (f x) (𝓕 g x) := by
@@ -167,6 +168,16 @@ theorem integral_bilin_fourier_eq (f : 𝓢(V, E)) (g : 𝓢(V, F)) (M : E →L[
167168
@[deprecated (since := "2025-11-16")]
168169
alias integral_bilin_fourierIntegral_eq := integral_bilin_fourier_eq
169170

171+
/-- The Fourier transform satisfies `∫ 𝓕 f • g = ∫ f • 𝓕 g`, i.e., it is self-adjoint. -/
172+
theorem integral_fourier_smul_eq (f : 𝓢(V, ℂ)) (g : 𝓢(V, F)) :
173+
∫ ξ, 𝓕 f ξ • g ξ = ∫ x, f x • 𝓕 g x :=
174+
integral_bilin_fourier_eq f g (ContinuousLinearMap.lsmul ℂ ℂ)
175+
176+
/-- The Fourier transform satisfies `∫ 𝓕 f * g = ∫ f * 𝓕 g`, i.e., it is self-adjoint. -/
177+
theorem integral_fourier_mul_eq (f : 𝓢(V, ℂ)) (g : 𝓢(V, ℂ)) :
178+
∫ ξ, 𝓕 f ξ * g ξ = ∫ x, f x * 𝓕 g x :=
179+
integral_bilin_fourier_eq f g (ContinuousLinearMap.mul ℂ ℂ)
180+
170181
theorem integral_sesq_fourier_eq (f : 𝓢(V, E)) (g : 𝓢(V, F)) (M : E →L⋆[ℂ] F →L[ℂ] G) :
171182
∫ ξ, M (𝓕 f ξ) (g ξ) = ∫ x, M (f x) (𝓕⁻ g x) := by
172183
simpa [fourierInv_coe] using VectorFourier.integral_sesq_fourierIntegral_eq_neg_flip M

Mathlib/Analysis/Distribution/TemperedDistribution.lean

Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -270,6 +270,25 @@ instance instFourierPair : FourierPair 𝓢'(E, F) 𝓢'(E, F) where
270270
instance instFourierPairInv : FourierInvPair 𝓢'(E, F) 𝓢'(E, F) where
271271
fourier_fourierInv_eq f := by ext; simp
272272

273+
variable [CompleteSpace F]
274+
275+
/-- The distributional Fourier transform and the classical Fourier transform coincide on
276+
`𝓢(E, F)`. -/
277+
theorem fourierTransform_toTemperedDistributionCLM_eq (f : 𝓢(E, F)) :
278+
𝓕 (f : 𝓢'(E, F)) = 𝓕 f := by
279+
ext g
280+
simpa using integral_fourier_smul_eq g f
281+
282+
/-- The distributional inverse Fourier transform and the classical inverse Fourier transform
283+
coincide on `𝓢(E, F)`. -/
284+
theorem fourierTransformInv_toTemperedDistributionCLM_eq (f : 𝓢(E, F)) :
285+
𝓕⁻ (f : 𝓢'(E, F)) = 𝓕⁻ f := calc
286+
_ = 𝓕⁻ (toTemperedDistributionCLM E F volume (𝓕 (𝓕⁻ f))) := by
287+
congr; exact (fourier_fourierInv_eq f).symm
288+
_ = 𝓕⁻ (𝓕 (toTemperedDistributionCLM E F volume (𝓕⁻ f))) := by
289+
rw [fourierTransform_toTemperedDistributionCLM_eq]
290+
_ = _ := fourierInv_fourier_eq _
291+
273292
end Fourier
274293

275294
end TemperedDistribution

0 commit comments

Comments
 (0)