@@ -201,9 +201,9 @@ private theorem tendsto_succ_norm_div_norm {r r' : ℝ≥0} (hr' : r' ≠ 0)
201201 div_self (pow_ne_zero _ (NNReal.coe_ne_zero.mpr hr')), one_mul, norm_div, NNReal.norm_eq]
202202 exact mul_comm r' r ▸ hc.mul tendsto_const_nhds
203203
204- theorem ofScalars_radius_ge_inv_of_tendsto {r : ℝ≥0 } (hr : r ≠ 0 )
204+ theorem inv_le_ofScalars_radius_of_tendsto {r : ℝ≥0 } (hr : r ≠ 0 )
205205 (hc : Tendsto (fun n ↦ ‖c n.succ‖ / ‖c n‖) atTop (𝓝 r)) :
206- (ofScalars E c).radius ≥ ofNNReal r⁻¹ := by
206+ ofNNReal r⁻¹ ≤ (ofScalars E c).radius := by
207207 refine le_of_forall_nnreal_lt (fun r' hr' ↦ ?_)
208208 rw [coe_lt_coe, NNReal.lt_inv_iff_mul_lt hr] at hr'
209209 by_cases hrz : r' = 0
@@ -220,12 +220,15 @@ theorem ofScalars_radius_ge_inv_of_tendsto {r : ℝ≥0} (hr : r ≠ 0)
220220 gcongr
221221 exact ofScalars_norm_le E c n (Nat.pos_iff_ne_zero.mpr hn)
222222
223+ @[deprecated (since := "2025-11-21")]
224+ alias ofScalars_radius_ge_inv_of_tendsto := inv_le_ofScalars_radius_of_tendsto
225+
223226/-- The radius of convergence of a scalar series is the inverse of the non-zero limit
224227`fun n ↦ ‖c n.succ‖ / ‖c n‖`. -/
225228theorem ofScalars_radius_eq_inv_of_tendsto [NormOneClass E] {r : ℝ≥0 } (hr : r ≠ 0 )
226229 (hc : Tendsto (fun n ↦ ‖c n.succ‖ / ‖c n‖) atTop (𝓝 r)) :
227230 (ofScalars E c).radius = ofNNReal r⁻¹ := by
228- refine le_antisymm ?_ (ofScalars_radius_ge_inv_of_tendsto E c hr hc)
231+ refine le_antisymm ?_ (inv_le_ofScalars_radius_of_tendsto E c hr hc)
229232 refine le_of_forall_nnreal_lt (fun r' hr' ↦ ?_)
230233 rw [coe_le_coe, NNReal.le_inv_iff_mul_le hr]
231234 have := FormalMultilinearSeries.summable_norm_mul_pow _ hr'
0 commit comments