@@ -50,7 +50,7 @@ protected theorem list_prod_mem {l : List G} : (∀ x ∈ l, x ∈ K) → l.prod
5050
5151/-- Product of a multiset of elements in a subgroup of a `CommGroup` is in the subgroup. -/
5252@[to_additive "Sum of a multiset of elements in an `AddSubgroup` of an `AddCommGroup` is in
53- the `AddSubgroup`." ]
53+ the `AddSubgroup`." ]
5454protected theorem multiset_prod_mem {G} [CommGroup G] (K : Subgroup G) (g : Multiset G) :
5555 (∀ a ∈ g, a ∈ K) → g.prod ∈ K :=
5656 multiset_prod_mem g
@@ -63,7 +63,7 @@ theorem multiset_noncommProd_mem (K : Subgroup G) (g : Multiset G) (comm) :
6363/-- Product of elements of a subgroup of a `CommGroup` indexed by a `Finset` is in the
6464 subgroup. -/
6565@[to_additive "Sum of elements in an `AddSubgroup` of an `AddCommGroup` indexed by a `Finset`
66- is in the `AddSubgroup`." ]
66+ is in the `AddSubgroup`." ]
6767protected theorem prod_mem {G : Type *} [CommGroup G] (K : Subgroup G) {ι : Type *} {t : Finset ι}
6868 {f : ι → G} (h : ∀ c ∈ t, f c ∈ K) : (∏ c ∈ t, f c) ∈ K :=
6969 prod_mem h
@@ -213,7 +213,7 @@ theorem pi_mem_of_mulSingle_mem [Finite η] [DecidableEq η] {H : Subgroup (∀
213213
214214/-- For finite index types, the `Subgroup.pi` is generated by the embeddings of the groups. -/
215215@[to_additive "For finite index types, the `Subgroup.pi` is generated by the embeddings of the
216- additive groups." ]
216+ additive groups." ]
217217theorem pi_le_iff [DecidableEq η] [Finite η] {H : ∀ i, Subgroup (f i)} {J : Subgroup (∀ i, f i)} :
218218 pi univ H ≤ J ↔ ∀ i : η, map (MonoidHom.mulSingle f i) (H i) ≤ J := by
219219 constructor
@@ -263,7 +263,7 @@ instance decidableMemRange (f : G →* N) [Fintype G] [DecidableEq N] : Decidabl
263263Note: this instance can form a diamond with `Subtype.fintype` in the
264264presence of `Fintype N`. -/
265265@[to_additive "The range of a finite additive monoid under an additive monoid homomorphism is
266- finite.
266+ finite.
267267
268268Note: this instance can form a diamond with `Subtype.fintype` or `Subgroup.fintype` in the presence
269269of `Fintype N`." ]
@@ -278,7 +278,7 @@ presence of `Fintype N`. -/
278278@[to_additive "The range of a finite additive group under an additive group homomorphism is finite.
279279
280280Note: this instance can form a diamond with `Subtype.fintype` or `Subgroup.fintype` in the
281- presence of `Fintype N`." ]
281+ presence of `Fintype N`." ]
282282instance fintypeRange [Fintype G] [DecidableEq N] (f : G →* N) : Fintype (range f) :=
283283 Set.fintypeRange f
284284
0 commit comments