Skip to content

Commit 5ffbd43

Browse files
committed
style: fix more doc-strings with indentation by an odd number of spaces (#24907)
Continuation of #24893.
1 parent 70a5f9f commit 5ffbd43

File tree

56 files changed

+156
-158
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

56 files changed

+156
-158
lines changed

Mathlib/Algebra/Category/ModuleCat/ChangeOfRings.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -385,7 +385,7 @@ variable (M : Type v) [AddCommMonoid M] [Module R M]
385385
-- local notation "S'" => (restrictScalars f).obj ⟨S⟩
386386

387387
/-- Given an `R`-module M, consider Hom(S, M) -- the `R`-linear maps between S (as an `R`-module by
388-
means of restriction of scalars) and M. `S` acts on Hom(S, M) by `s • g = x ↦ g (x • s)`
388+
means of restriction of scalars) and M. `S` acts on Hom(S, M) by `s • g = x ↦ g (x • s)`
389389
-/
390390
instance hasSMul : SMul S <| (restrictScalars f).obj (of _ S) →ₗ[R] M where
391391
smul s g :=

Mathlib/Algebra/Group/Subgroup/Finite.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ protected theorem list_prod_mem {l : List G} : (∀ x ∈ l, x ∈ K) → l.prod
5050

5151
/-- Product of a multiset of elements in a subgroup of a `CommGroup` is in the subgroup. -/
5252
@[to_additive "Sum of a multiset of elements in an `AddSubgroup` of an `AddCommGroup` is in
53-
the `AddSubgroup`."]
53+
the `AddSubgroup`."]
5454
protected theorem multiset_prod_mem {G} [CommGroup G] (K : Subgroup G) (g : Multiset G) :
5555
(∀ a ∈ g, a ∈ K) → g.prod ∈ K :=
5656
multiset_prod_mem g
@@ -63,7 +63,7 @@ theorem multiset_noncommProd_mem (K : Subgroup G) (g : Multiset G) (comm) :
6363
/-- Product of elements of a subgroup of a `CommGroup` indexed by a `Finset` is in the
6464
subgroup. -/
6565
@[to_additive "Sum of elements in an `AddSubgroup` of an `AddCommGroup` indexed by a `Finset`
66-
is in the `AddSubgroup`."]
66+
is in the `AddSubgroup`."]
6767
protected theorem prod_mem {G : Type*} [CommGroup G] (K : Subgroup G) {ι : Type*} {t : Finset ι}
6868
{f : ι → G} (h : ∀ c ∈ t, f c ∈ K) : (∏ c ∈ t, f c) ∈ K :=
6969
prod_mem h
@@ -213,7 +213,7 @@ theorem pi_mem_of_mulSingle_mem [Finite η] [DecidableEq η] {H : Subgroup (∀
213213

214214
/-- For finite index types, the `Subgroup.pi` is generated by the embeddings of the groups. -/
215215
@[to_additive "For finite index types, the `Subgroup.pi` is generated by the embeddings of the
216-
additive groups."]
216+
additive groups."]
217217
theorem pi_le_iff [DecidableEq η] [Finite η] {H : ∀ i, Subgroup (f i)} {J : Subgroup (∀ i, f i)} :
218218
pi univ H ≤ J ↔ ∀ i : η, map (MonoidHom.mulSingle f i) (H i) ≤ J := by
219219
constructor
@@ -263,7 +263,7 @@ instance decidableMemRange (f : G →* N) [Fintype G] [DecidableEq N] : Decidabl
263263
Note: this instance can form a diamond with `Subtype.fintype` in the
264264
presence of `Fintype N`. -/
265265
@[to_additive "The range of a finite additive monoid under an additive monoid homomorphism is
266-
finite.
266+
finite.
267267
268268
Note: this instance can form a diamond with `Subtype.fintype` or `Subgroup.fintype` in the presence
269269
of `Fintype N`."]
@@ -278,7 +278,7 @@ presence of `Fintype N`. -/
278278
@[to_additive "The range of a finite additive group under an additive group homomorphism is finite.
279279
280280
Note: this instance can form a diamond with `Subtype.fintype` or `Subgroup.fintype` in the
281-
presence of `Fintype N`."]
281+
presence of `Fintype N`."]
282282
instance fintypeRange [Fintype G] [DecidableEq N] (f : G →* N) : Fintype (range f) :=
283283
Set.fintypeRange f
284284

Mathlib/Algebra/GroupWithZero/Defs.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -154,8 +154,8 @@ lemma IsRightCancelMulZero.to_isCancelMulZero [IsRightCancelMulZero M₀] :
154154
end CommSemigroup
155155

156156
/-- A type `M` is a `CancelCommMonoidWithZero` if it is a commutative monoid with zero element,
157-
`0` is left and right absorbing,
158-
and left/right multiplication by a non-zero element is injective. -/
157+
`0` is left and right absorbing,
158+
and left/right multiplication by a non-zero element is injective. -/
159159
class CancelCommMonoidWithZero (M₀ : Type*) extends CommMonoidWithZero M₀, IsLeftCancelMulZero M₀
160160

161161
-- See note [lower cancel priority]

Mathlib/Algebra/GroupWithZero/Divisibility.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ theorem eq_zero_of_zero_dvd (h : 0 ∣ a) : a = 0 :=
2727
Dvd.elim h fun c H' => H'.trans (zero_mul c)
2828

2929
/-- Given an element `a` of a commutative semigroup with zero, there exists another element whose
30-
product with zero equals `a` iff `a` equals zero. -/
30+
product with zero equals `a` iff `a` equals zero. -/
3131
@[simp]
3232
theorem zero_dvd_iff : 0 ∣ a ↔ a = 0 :=
3333
⟨eq_zero_of_zero_dvd, fun h => by
@@ -41,13 +41,13 @@ theorem dvd_zero (a : α) : a ∣ 0 :=
4141
end SemigroupWithZero
4242

4343
/-- Given two elements `b`, `c` of a `CancelMonoidWithZero` and a nonzero element `a`,
44-
`a*b` divides `a*c` iff `b` divides `c`. -/
44+
`a*b` divides `a*c` iff `b` divides `c`. -/
4545
theorem mul_dvd_mul_iff_left [CancelMonoidWithZero α] {a b c : α} (ha : a ≠ 0) :
4646
a * b ∣ a * c ↔ b ∣ c :=
4747
exists_congr fun d => by rw [mul_assoc, mul_right_inj' ha]
4848

4949
/-- Given two elements `a`, `b` of a commutative `CancelMonoidWithZero` and a nonzero
50-
element `c`, `a*c` divides `b*c` iff `a` divides `b`. -/
50+
element `c`, `a*c` divides `b*c` iff `a` divides `b`. -/
5151
theorem mul_dvd_mul_iff_right [CancelCommMonoidWithZero α] {a b c : α} (hc : c ≠ 0) :
5252
a * c ∣ b * c ↔ a ∣ b :=
5353
exists_congr fun d => by rw [mul_right_comm, mul_left_inj' hc]

Mathlib/Algebra/Module/LinearMap/End.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -346,7 +346,7 @@ variable (S)
346346

347347
/-- Applying a linear map at `v : M`, seen as `S`-linear map from `M →ₗ[R] M₂` to `M₂`.
348348
349-
See `LinearMap.applyₗ` for a version where `S = R`. -/
349+
See `LinearMap.applyₗ` for a version where `S = R`. -/
350350
@[simps]
351351
def applyₗ' : M →+ (M →ₗ[R] M₂) →ₗ[S] M₂ where
352352
toFun v :=

Mathlib/Algebra/MonoidAlgebra/NoZeroDivisors.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ The actual assumptions on `R` are weaker.
3939
`NoZeroDivisors R[A]`.
4040
4141
TODO: move the rest of the docs to UniqueProds?
42-
`NoZeroDivisors.of_left_ordered` shows that if `R` is a semiring with no non-zero
42+
* `NoZeroDivisors.of_left_ordered` shows that if `R` is a semiring with no non-zero
4343
zero-divisors, `A` is a linearly ordered, add right cancel semigroup with strictly monotone
4444
left addition, then `R[A]` has no non-zero zero-divisors.
4545
* `NoZeroDivisors.of_right_ordered` shows that if `R` is a semiring with no non-zero

Mathlib/Algebra/MvPolynomial/Rename.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@ theorem rename_leftInverse {f : σ → τ} {g : τ → σ} (hf : Function.LeftIn
120120

121121
theorem rename_rightInverse {f : σ → τ} {g : τ → σ} (hf : Function.RightInverse f g) :
122122
Function.RightInverse (rename f : MvPolynomial σ R → MvPolynomial τ R) (rename g) :=
123-
rename_leftInverse hf
123+
rename_leftInverse hf
124124

125125
theorem rename_surjective (f : σ → τ) (hf : Function.Surjective f) :
126126
Function.Surjective (rename f : MvPolynomial σ R → MvPolynomial τ R) :=

Mathlib/Algebra/Squarefree/Basic.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -15,13 +15,13 @@ except the squares of units.
1515
Results about squarefree natural numbers are proved in `Data.Nat.Squarefree`.
1616
1717
## Main Definitions
18-
- `Squarefree r` indicates that `r` is only divisible by `x * x` if `x` is a unit.
18+
- `Squarefree r` indicates that `r` is only divisible by `x * x` if `x` is a unit.
1919
2020
## Main Results
21-
- `multiplicity.squarefree_iff_emultiplicity_le_one`: `x` is `Squarefree` iff for every `y`, either
21+
- `multiplicity.squarefree_iff_emultiplicity_le_one`: `x` is `Squarefree` iff for every `y`, either
2222
`emultiplicity y x ≤ 1` or `IsUnit y`.
23-
- `UniqueFactorizationMonoid.squarefree_iff_nodup_factors`: A nonzero element `x` of a unique
24-
factorization monoid is squarefree iff `factors x` has no duplicate factors.
23+
- `UniqueFactorizationMonoid.squarefree_iff_nodup_factors`: A nonzero element `x` of a unique
24+
factorization monoid is squarefree iff `factors x` has no duplicate factors.
2525
2626
## Tags
2727
squarefree, multiplicity

Mathlib/Algebra/Star/Basic.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -316,8 +316,8 @@ def starRingEnd : R →+* R := @starRingAut R _ _
316316
scoped[ComplexConjugate] notation "conj" => starRingEnd _
317317

318318
/-- This is not a simp lemma, since we usually want simp to keep `starRingEnd` bundled.
319-
For example, for complex conjugation, we don't want simp to turn `conj x`
320-
into the bare function `star x` automatically since most lemmas are about `conj x`. -/
319+
For example, for complex conjugation, we don't want simp to turn `conj x`
320+
into the bare function `star x` automatically since most lemmas are about `conj x`. -/
321321
theorem starRingEnd_apply (x : R) : starRingEnd R x = star x := rfl
322322

323323
/- Porting note (https://github.com/leanprover-community/mathlib4/issues/11119): removed `simp` attribute due to report by linter:

Mathlib/AlgebraicGeometry/Pullbacks.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -88,7 +88,7 @@ abbrev fV (i j : 𝒰.J) : v 𝒰 f g i j ⟶ pullback (𝒰.map i ≫ f) g :=
8888
pullback.fst _ _
8989

9090
/-- The map `((Xᵢ ×[Z] Y) ×[X] Xⱼ) ×[Xᵢ ×[Z] Y] ((Xᵢ ×[Z] Y) ×[X] Xₖ)` ⟶
91-
`((Xⱼ ×[Z] Y) ×[X] Xₖ) ×[Xⱼ ×[Z] Y] ((Xⱼ ×[Z] Y) ×[X] Xᵢ)` needed for gluing -/
91+
`((Xⱼ ×[Z] Y) ×[X] Xₖ) ×[Xⱼ ×[Z] Y] ((Xⱼ ×[Z] Y) ×[X] Xᵢ)` needed for gluing -/
9292
def t' (i j k : 𝒰.J) :
9393
pullback (fV 𝒰 f g i j) (fV 𝒰 f g i k) ⟶ pullback (fV 𝒰 f g j k) (fV 𝒰 f g j i) := by
9494
refine (pullbackRightPullbackFstIso ..).hom ≫ ?_

0 commit comments

Comments
 (0)