@@ -164,14 +164,17 @@ lemma toBasisAt_coe (hs : IsLocalFrameOn I F n s u) (hx : x β u) (i : ΞΉ) :
164164
165165/-- If `{sα΅’}` is a local frame on a vector bundle, `F` being finite-dimensional implies the
166166indexing set being finite. -/
167- def fintype_of_finiteDimensional [VectorBundle π F V] [FiniteDimensional π F]
167+ noncomputable def fintypeOfFiniteDimensional [VectorBundle π F V] [FiniteDimensional π F]
168168 (hs : IsLocalFrameOn I F n s u) (hx : x β u) : Fintype ΞΉ := by
169169 have : FiniteDimensional π (V x) := by
170170 let phi := (trivializationAt F V x).linearEquivAt π x
171171 (FiberBundle.mem_baseSet_trivializationAt' x)
172172 exact Finite.equiv phi.symm
173173 exact FiniteDimensional.fintypeBasisIndex (hs.toBasisAt hx)
174174
175+ @ [deprecated (since := "2025-12-19" )]
176+ alias fintype_of_finiteDimensional := fintypeOfFiniteDimensional
177+
175178open scoped Classical in
176179/-- Coefficients of a section `s` of `V` w.r.t. a local frame `{s i}` on `u`.
177180Outside of `u`, this returns the junk value 0. -/
@@ -234,7 +237,7 @@ frame at `x` agree. -/
234237lemma eq_iff_coeff [VectorBundle π F V] [FiniteDimensional π F]
235238 (hs : IsLocalFrameOn I F n s u) (hx : x β u) :
236239 t x = t' x β β i, hs.coeff i t x = hs.coeff i t' x := by
237- have := fintype_of_finiteDimensional hs hx
240+ have := fintypeOfFiniteDimensional hs hx
238241 exact β¨fun h i β¦ hs.coeff_congr h i, fun h β¦ by
239242 simp +contextual [h, hs.coeff_sum_eq t hx, hs.coeff_sum_eq t' hx]β©
240243
@@ -249,7 +252,7 @@ then `t` is `C^n` on `u`. -/
249252lemma contMDiffOn_of_coeff [FiniteDimensional π F] (h : β i, CMDiff[u] n (hs.coeff i t)) :
250253 CMDiff[u] n (T% t) := by
251254 rcases u.eq_empty_or_nonempty with rfl | β¨x, hxβ©; Β· simp
252- have := fintype_of_finiteDimensional hs hx
255+ have := fintypeOfFiniteDimensional hs hx
253256 have this (i) : CMDiff[u] n (T% (hs.coeff i t β’ s i)) :=
254257 (h i).smul_section (hs.contMDiffOn i)
255258 have almost : CMDiff[u] n (T% (fun x β¦ β i, (hs.coeff i t) x β’ s i x)) :=
@@ -262,7 +265,7 @@ lemma contMDiffOn_of_coeff [FiniteDimensional π F] (h : β i, CMDiff[u] n (h
262265if a section `t` has `C^k` coefficients at `x` w.r.t. `s i`, then `t` is `C^n` at `x`. -/
263266lemma contMDiffAt_of_coeff [FiniteDimensional π F]
264267 (h : β i, CMDiffAt n (hs.coeff i t) x) (hu : u β π x) : CMDiffAt n (T% t) x := by
265- have := fintype_of_finiteDimensional hs (mem_of_mem_nhds hu)
268+ have := fintypeOfFiniteDimensional hs (mem_of_mem_nhds hu)
266269 have almost : CMDiffAt n (T% (fun x β¦ β i, (hs.coeff i t) x β’ s i x)) x :=
267270 .sum_section (fun i _ β¦ (h i).smul_section <| (hs.contMDiffOn i).contMDiffAt hu)
268271 exact almost.congr_of_eventuallyEq <| (hs.eventually_eq_sum_coeff_smul t hu).mono (by simp)
@@ -271,7 +274,7 @@ lemma contMDiffAt_of_coeff [FiniteDimensional π F]
271274coefficients at `x β u` w.r.t. `s i`, then `t` is `C^n` at `x`. -/
272275lemma contMDiffAt_of_coeff_aux [FiniteDimensional π F] (h : β i, CMDiffAt n (hs.coeff i t) x)
273276 (hu : IsOpen u) (hx : x β u) : CMDiffAt n (T% t) x := by
274- have := fintype_of_finiteDimensional hs hx
277+ have := fintypeOfFiniteDimensional hs hx
275278 exact hs.contMDiffAt_of_coeff h (hu.mem_nhds hx)
276279
277280section
@@ -283,7 +286,7 @@ w.r.t. `s i`, then `t` is differentiable on `u`. -/
283286lemma mdifferentiableOn_of_coeff [FiniteDimensional π F] (h : β i, MDiff[u] (hs.coeff i t)) :
284287 MDiff[u] (T% t) := by
285288 rcases u.eq_empty_or_nonempty with rfl | β¨x, hxβ©; Β· simp
286- have := fintype_of_finiteDimensional hs hx
289+ have := fintypeOfFiniteDimensional hs hx
287290 have this (i) : MDiff[u] (T% (hs.coeff i t β’ s i)) :=
288291 (h i).smul_section ((hs.contMDiffOn i).mdifferentiableOn le_rfl)
289292 have almost : MDiff[u] (T% (fun x β¦ β i, (hs.coeff i t) x β’ s i x)) :=
@@ -296,7 +299,7 @@ lemma mdifferentiableOn_of_coeff [FiniteDimensional π F] (h : β i, MDiff[u]
296299coefficients at `x` w.r.t. `s i`, then `t` is differentiable at `x`. -/
297300lemma mdifferentiableAt_of_coeff [FiniteDimensional π F]
298301 (h : β i, MDiffAt (hs.coeff i t) x) (hu : u β π x) : MDiffAt (T% t) x := by
299- have := fintype_of_finiteDimensional hs (mem_of_mem_nhds hu)
302+ have := fintypeOfFiniteDimensional hs (mem_of_mem_nhds hu)
300303 have almost : MDiffAt (T% (fun x β¦ β i, (hs.coeff i t) x β’ s i x)) x :=
301304 .sum_section (fun i β¦ (h i).smul_section <|
302305 ((hs.contMDiffOn i).mdifferentiableOn le_rfl).mdifferentiableAt hu)
0 commit comments