Skip to content

Commit 7c82cee

Browse files
committed
chore: update SHA (#3174)
* Update SHA of `Mathlib.Algebra.QuadraticDiscriminant`. Most changes were forward-ported during initial porting. * Drop an unused `have`, squash 2 lines.
1 parent 3035dbf commit 7c82cee

File tree

1 file changed

+4
-6
lines changed

1 file changed

+4
-6
lines changed

Mathlib/Algebra/QuadraticDiscriminant.lean

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Zhouhang Zhou
55
66
! This file was ported from Lean 3 source module algebra.quadratic_discriminant
7-
! leanprover-community/mathlib commit 829895f162a1f29d0133f4b3538f4cd1fb5bffd3
7+
! leanprover-community/mathlib commit e085d1df33274f4b32f611f483aae678ba0b42df
88
! Please do not edit these lines, except to modify the commit id
99
! if you have ported upstream changes.
1010
-/
@@ -89,7 +89,6 @@ variable {K : Type _} [Field K] [NeZero (2 : K)] {a b c x : K}
8989
theorem quadratic_eq_zero_iff (ha : a ≠ 0) {s : K} (h : discrim a b c = s * s) (x : K) :
9090
a * x * x + b * x + c = 0 ↔ x = (-b + s) / (2 * a) ∨ x = (-b - s) / (2 * a) := by
9191
rw [quadratic_eq_zero_iff_discrim_eq_sq ha, h, sq, mul_self_eq_mul_self_iff]
92-
have ne : 2 * a ≠ 0 := mul_ne_zero (NeZero.ne _) ha
9392
field_simp
9493
apply or_congr
9594
· constructor <;> intro h' <;> linear_combination -h'
@@ -149,11 +148,10 @@ lemma discrim_le_zero_of_nonpos (h : ∀ x : K, a * x * x + b * x + c ≤ 0) : d
149148
/-- If a polynomial of degree 2 is always positive, then its discriminant is negative,
150149
at least when the coefficient of the quadratic term is nonzero.
151150
-/
152-
theorem discrim_lt_zero (ha : a ≠ 0) (h : ∀ x : K, 0 < a * x * x + b * x + c) : discrim a b c < 0 :=
153-
by
151+
theorem discrim_lt_zero (ha : a ≠ 0) (h : ∀ x : K, 0 < a * x * x + b * x + c) :
152+
discrim a b c < 0 := by
154153
have : ∀ x : K, 0 ≤ a * x * x + b * x + c := fun x => le_of_lt (h x)
155-
refine' lt_of_le_of_ne (discrim_le_zero this) _
156-
intro h'
154+
refine lt_of_le_of_ne (discrim_le_zero this) fun h' ↦ ?_
157155
have := h (-b / (2 * a))
158156
have : a * (-b / (2 * a)) * (-b / (2 * a)) + b * (-b / (2 * a)) + c = 0 := by
159157
rw [quadratic_eq_zero_iff_of_discrim_eq_zero ha h' (-b / (2 * a))]

0 commit comments

Comments
 (0)