|
| 1 | +/- |
| 2 | +Copyright (c) 2025 Joël Riou. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Joël Riou |
| 5 | +-/ |
| 6 | +import Mathlib.AlgebraicTopology.SimplicialSet.NonDegenerateSimplicesSubcomplex |
| 7 | +import Mathlib.AlgebraicTopology.SimplicialSet.AnodyneExtensions.IsUniquelyCodimOneFace |
| 8 | + |
| 9 | +/-! |
| 10 | +# Pairings |
| 11 | +
|
| 12 | +In this file, we introduce the definition of a pairing for a subcomplex `A` |
| 13 | +of a simplicial set `X`, following the ideas by Sean Moss, |
| 14 | +*Another approach to the Kan-Quillen model structure*, who gave a |
| 15 | +complete combinatorial characterization of strong (inner) anodyne extensions. |
| 16 | +Strong (inner) anodyne extensions are transfinite compositions of pushouts of coproducts |
| 17 | +of (inner) horn inclusions, i.e. this is similar to (inner) anodyne extensions but |
| 18 | +without the stability property under retracts. |
| 19 | +
|
| 20 | +A pairing for `A` consists in the data of a partition of the nondegenerate |
| 21 | +simplices of `X` not in `A` into type (I) simplices and type (II) simplices, |
| 22 | +and of a bijection between the types of type (I) and type (II) simplices. |
| 23 | +Indeed, the main observation is that when we attach a simplex along a horn |
| 24 | +inclusion, exactly two nondegenerate simplices are added: this simplex, |
| 25 | +and the unique face which is not in the image of the horn. The former shall be |
| 26 | +considered as of type (I) and the latter as type (II). |
| 27 | +
|
| 28 | +We say that a pairing is *regular* (typeclass `Pairing.IsRegular`) when |
| 29 | +- it is proper (`Pairing.IsProper`), i.e. any type (II) simplex is uniquely |
| 30 | +a face of the corresponding type (I) simplex. |
| 31 | +- a certain ancestrality relation is well founded. |
| 32 | +When these conditions are satisfied, the inclusion `A.ι : A ⟶ X` is |
| 33 | +a strong anodyne extension (TODO @joelriou), and the converse is also true |
| 34 | +(if `A.ι` is a strong anodyne extension, then there is a regular pairing for `A` (TODO)). |
| 35 | +
|
| 36 | +## References |
| 37 | +* [Sean Moss, *Another approach to the Kan-Quillen model structure*][moss-2020] |
| 38 | +
|
| 39 | +-/ |
| 40 | + |
| 41 | +universe u |
| 42 | + |
| 43 | +namespace SSet.Subcomplex |
| 44 | + |
| 45 | +variable {X : SSet.{u}} (A : X.Subcomplex) |
| 46 | + |
| 47 | +/-- A pairing for a subcomplex `A` of a simplicial set `X` consists of a partition |
| 48 | +of the nondegenerate simplices of `X` not in `A` in two types (I) and (II) of simplices, |
| 49 | +and a bijection between the type (II) simplices and the type (I) simplices. |
| 50 | +See the introduction of the file `AlgebraicTopology.SimplicialSet.AnodyneExtensions.Pairing`. -/ |
| 51 | +structure Pairing where |
| 52 | + /-- the set of type (I) simplices -/ |
| 53 | + I : Set A.N |
| 54 | + /-- the set of type (II) simplices -/ |
| 55 | + II : Set A.N |
| 56 | + inter : I ∩ II = ∅ |
| 57 | + union : I ∪ II = Set.univ |
| 58 | + /-- a bijection from the type (II) simplices to the type (I) simplices -/ |
| 59 | + p : II ≃ I |
| 60 | + |
| 61 | +namespace Pairing |
| 62 | + |
| 63 | +variable {A} (P : A.Pairing) |
| 64 | + |
| 65 | +/-- A pairing is regular when each type (II) simplex |
| 66 | +is uniquely a `1`-codimensional face of the corresponding (I) |
| 67 | +simplex. -/ |
| 68 | +class IsProper where |
| 69 | + isUniquelyCodimOneFace (x : P.II) : |
| 70 | + S.IsUniquelyCodimOneFace x.1.toS (P.p x).1.toS |
| 71 | + |
| 72 | +lemma isUniquelyCodimOneFace [P.IsProper] (x : P.II) : |
| 73 | + S.IsUniquelyCodimOneFace x.1.toS (P.p x).1.toS := |
| 74 | + IsProper.isUniquelyCodimOneFace x |
| 75 | + |
| 76 | +/-- The condition that a pairing only involves inner horns. -/ |
| 77 | +class IsInner [P.IsProper] : Prop where |
| 78 | + ne_zero (x : P.II) {d : ℕ} (hd : x.1.dim = d) : |
| 79 | + (P.isUniquelyCodimOneFace x).index hd ≠ 0 |
| 80 | + ne_last (x : P.II) {d : ℕ} (hd : x.1.dim = d) : |
| 81 | + (P.isUniquelyCodimOneFace x).index hd ≠ Fin.last _ |
| 82 | + |
| 83 | +/-- The ancestrality relation on type (II) simplices. -/ |
| 84 | +def AncestralRel (x y : P.II) : Prop := |
| 85 | + x ≠ y ∧ x.1 < (P.p y).1 |
| 86 | + |
| 87 | +/-- A proper pairing is regular when the ancestrality relation |
| 88 | +is well founded. -/ |
| 89 | +class IsRegular extends P.IsProper where |
| 90 | + wf : WellFounded P.AncestralRel |
| 91 | + |
| 92 | +section |
| 93 | + |
| 94 | +variable [P.IsRegular] |
| 95 | + |
| 96 | +lemma wf : WellFounded P.AncestralRel := IsRegular.wf |
| 97 | + |
| 98 | +instance : IsWellFounded _ P.AncestralRel where |
| 99 | + wf := P.wf |
| 100 | + |
| 101 | +end |
| 102 | + |
| 103 | +end Pairing |
| 104 | + |
| 105 | +end SSet.Subcomplex |
0 commit comments