@@ -539,7 +539,7 @@ theorem hasStrictFDerivAt_list_prod [DecidableEq ι] [Fintype ι] {l : List ι}
539539 HasStrictFDerivAt (𝕜 := 𝕜) (fun x ↦ (l.map x).prod)
540540 (l.map fun i ↦ ((l.erase i).map x).prod • proj i).sum x := by
541541 refine hasStrictFDerivAt_list_prod'.congr_fderiv ?_
542- conv_rhs => arg 1 ; arg 2 ; rw [← List.finRange_map_get l]
542+ conv_rhs => arg 1 ; arg 2 ; rw [← List.map_get_finRange l]
543543 simp only [List.map_map, ← List.sum_toFinset _ (List.nodup_finRange _), List.toFinset_finRange,
544544 Function.comp_def, ((List.erase_getElem _).map _).prod_eq, List.eraseIdx_eq_take_drop_succ,
545545 List.map_append, List.prod_append, List.get_eq_getElem, Fin.getElem_fin, Nat.succ_eq_add_one]
@@ -575,7 +575,7 @@ theorem HasStrictFDerivAt.list_prod' {l : List ι} {x : E}
575575 HasStrictFDerivAt (fun x ↦ (l.map (f · x)).prod)
576576 (∑ i : Fin l.length, ((l.take i).map (f · x)).prod •
577577 f' l[i] <• ((l.drop (.succ i)).map (f · x)).prod) x := by
578- simp_rw [Fin.getElem_fin, ← l.get_eq_getElem, ← List.finRange_map_get l, List.map_map]
578+ simp_rw [Fin.getElem_fin, ← l.get_eq_getElem, ← List.map_get_finRange l, List.map_map]
579579 -- After https://github.com/leanprover-community/mathlib4/issues/19108, we have to be optimistic with `:)`s; otherwise Lean decides it need to find
580580 -- `NormedAddCommGroup (List 𝔸)` which is nonsense.
581581 refine .congr_fderiv (hasStrictFDerivAt_list_prod_finRange'.comp x
@@ -593,7 +593,7 @@ theorem HasFDerivAt.list_prod' {l : List ι} {x : E}
593593 HasFDerivAt (fun x ↦ (l.map (f · x)).prod)
594594 (∑ i : Fin l.length, ((l.take i).map (f · x)).prod •
595595 f' l[i] <• ((l.drop (.succ i)).map (f · x)).prod) x := by
596- simp_rw [Fin.getElem_fin, ← l.get_eq_getElem, ← List.finRange_map_get l, List.map_map]
596+ simp_rw [Fin.getElem_fin, ← l.get_eq_getElem, ← List.map_get_finRange l, List.map_map]
597597 refine .congr_fderiv (hasFDerivAt_list_prod_finRange'.comp x
598598 (hasFDerivAt_pi.mpr fun i ↦ h (l.get i) (l.get_mem i)) :) ?_
599599 ext m
@@ -606,7 +606,7 @@ theorem HasFDerivWithinAt.list_prod' {l : List ι} {x : E}
606606 HasFDerivWithinAt (fun x ↦ (l.map (f · x)).prod)
607607 (∑ i : Fin l.length, ((l.take i).map (f · x)).prod •
608608 f' l[i] <• ((l.drop (.succ i)).map (f · x)).prod) s x := by
609- simp_rw [Fin.getElem_fin, ← l.get_eq_getElem, ← List.finRange_map_get l, List.map_map]
609+ simp_rw [Fin.getElem_fin, ← l.get_eq_getElem, ← List.map_get_finRange l, List.map_map]
610610 refine .congr_fderiv (hasFDerivAt_list_prod_finRange'.comp_hasFDerivWithinAt x
611611 (hasFDerivWithinAt_pi.mpr fun i ↦ h (l.get i) (l.get_mem i)) :) ?_
612612 ext m
0 commit comments