File tree Expand file tree Collapse file tree 2 files changed +17
-0
lines changed
Expand file tree Collapse file tree 2 files changed +17
-0
lines changed Original file line number Diff line number Diff line change @@ -84,6 +84,12 @@ theorem subsingleton_univ_iff : (univ : Set α).Subsingleton ↔ Subsingleton α
8484 ⟨subsingleton_of_univ_subsingleton, fun h => @subsingleton_univ _ h⟩
8585#align set.subsingleton_univ_iff Set.subsingleton_univ_iff
8686
87+ lemma Subsingleton.inter_singleton : (s ∩ {a}).Subsingleton :=
88+ Set.subsingleton_of_subset_singleton Set.inter_subset_right
89+
90+ lemma Subsingleton.singleton_inter : ({a} ∩ s).Subsingleton :=
91+ Set.subsingleton_of_subset_singleton Set.inter_subset_left
92+
8793theorem subsingleton_of_subsingleton [Subsingleton α] {s : Set α} : Set.Subsingleton s :=
8894 subsingleton_univ.anti (subset_univ s)
8995#align set.subsingleton_of_subsingleton Set.subsingleton_of_subsingleton
Original file line number Diff line number Diff line change @@ -1068,6 +1068,17 @@ theorem SeparationQuotient.t1Space_iff : T1Space (SeparationQuotient X) ↔ R0Sp
10681068 erw [mk_eq_mk, inseparable_iff_specializes_and]
10691069 exact ⟨xspecy, yspecx⟩
10701070
1071+ lemma Set.Subsingleton.isClosed [T1Space X] {A : Set X} (h : A.Subsingleton) : IsClosed A := by
1072+ rcases h.eq_empty_or_singleton with rfl | ⟨x, rfl⟩
1073+ · exact isClosed_empty
1074+ · exact isClosed_singleton
1075+
1076+ lemma isClosed_inter_singleton [T1Space X] {A : Set X} {a : X} : IsClosed (A ∩ {a}) :=
1077+ Subsingleton.inter_singleton.isClosed
1078+
1079+ lemma isClosed_singleton_inter [T1Space X] {A : Set X} {a : X} : IsClosed ({a} ∩ A) :=
1080+ Subsingleton.singleton_inter.isClosed
1081+
10711082theorem singleton_mem_nhdsWithin_of_mem_discrete {s : Set X} [DiscreteTopology s] {x : X}
10721083 (hx : x ∈ s) : {x} ∈ 𝓝[s] x := by
10731084 have : ({⟨x, hx⟩} : Set s) ∈ 𝓝 (⟨x, hx⟩ : s) := by simp [nhds_discrete]
You can’t perform that action at this time.
0 commit comments