File tree Expand file tree Collapse file tree 1 file changed +9
-0
lines changed
Mathlib/Combinatorics/SimpleGraph Expand file tree Collapse file tree 1 file changed +9
-0
lines changed Original file line number Diff line number Diff line change @@ -436,6 +436,11 @@ theorem mem_edgeSet : s(v, w) ∈ G.edgeSet ↔ G.Adj v w :=
436436theorem not_isDiag_of_mem_edgeSet : e ∈ edgeSet G → ¬e.IsDiag :=
437437 Sym2.ind (fun _ _ => Adj.ne) e
438438
439+ @[simp] lemma not_mem_edgeSet_of_isDiag : e.IsDiag → e ∉ edgeSet G :=
440+ imp_not_comm.1 G.not_isDiag_of_mem_edgeSet
441+
442+ alias _root_.Sym2.IsDiag.not_mem_edgeSet := not_mem_edgeSet_of_isDiag
443+
439444theorem edgeSet_inj : G₁.edgeSet = G₂.edgeSet ↔ G₁ = G₂ := (edgeSetEmbedding V).eq_iff_eq
440445
441446@[simp]
@@ -588,6 +593,10 @@ theorem fromEdgeSet_edgeSet : fromEdgeSet G.edgeSet = G := by
588593 ext v w
589594 exact ⟨fun h => h.1 , fun h => ⟨h, G.ne_of_adj h⟩⟩
590595
596+ lemma edgeSet_eq_iff : G.edgeSet = s ↔ G = fromEdgeSet s ∧ Disjoint s {e | e.IsDiag} where
597+ mp := by rintro rfl; simp +contextual [Set.disjoint_right]
598+ mpr := by rintro ⟨rfl, hs⟩; simp [hs]
599+
591600@[simp]
592601theorem fromEdgeSet_empty : fromEdgeSet (∅ : Set (Sym2 V)) = ⊥ := by
593602 ext v w
You can’t perform that action at this time.
0 commit comments