|
| 1 | +/- |
| 2 | +Copyright (c) 2025 Sven Manthe. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Sven Manthe |
| 5 | +-/ |
| 6 | +module |
| 7 | + |
| 8 | +public import Mathlib.Algebra.Group.Opposite |
| 9 | +public import Mathlib.Algebra.Group.Subsemigroup.Basic |
| 10 | + |
| 11 | +/-! |
| 12 | +# Subsemigroup of opposite semigroups |
| 13 | +
|
| 14 | +For every semigroup `M`, we construct an equivalence between subsemigroups of `M` and that of |
| 15 | +`Mᵐᵒᵖ`. |
| 16 | +
|
| 17 | +-/ |
| 18 | + |
| 19 | +@[expose] public section |
| 20 | + |
| 21 | +assert_not_exists MonoidWithZero |
| 22 | + |
| 23 | +variable {ι : Sort*} {M : Type*} [Mul M] |
| 24 | + |
| 25 | +namespace Subsemigroup |
| 26 | + |
| 27 | +/-- Pull a subsemigroup back to an opposite subsemigroup along `MulOpposite.unop` -/ |
| 28 | +@[to_additive (attr := simps) /-- Pull an additive subsemigroup back to an opposite subsemigroup |
| 29 | + along `AddOpposite.unop` -/] |
| 30 | +protected def op (x : Subsemigroup M) : Subsemigroup Mᵐᵒᵖ where |
| 31 | + carrier := MulOpposite.unop ⁻¹' x |
| 32 | + mul_mem' ha hb := x.mul_mem hb ha |
| 33 | + |
| 34 | +@[to_additive (attr := simp)] |
| 35 | +theorem mem_op {x : Mᵐᵒᵖ} {S : Subsemigroup M} : x ∈ S.op ↔ x.unop ∈ S := Iff.rfl |
| 36 | + |
| 37 | +/-- Pull an opposite subsemigroup back to a subsemigroup along `MulOpposite.op` -/ |
| 38 | +@[to_additive (attr := simps) /-- Pull an opposite additive subsemigroup back to a subsemigroup |
| 39 | + along `AddOpposite.op` -/] |
| 40 | +protected def unop (x : Subsemigroup Mᵐᵒᵖ) : Subsemigroup M where |
| 41 | + carrier := MulOpposite.op ⁻¹' x |
| 42 | + mul_mem' ha hb := x.mul_mem hb ha |
| 43 | + |
| 44 | +@[to_additive (attr := simp)] |
| 45 | +theorem mem_unop {x : M} {S : Subsemigroup Mᵐᵒᵖ} : x ∈ S.unop ↔ MulOpposite.op x ∈ S := Iff.rfl |
| 46 | + |
| 47 | +@[to_additive (attr := simp)] |
| 48 | +theorem unop_op (S : Subsemigroup M) : S.op.unop = S := rfl |
| 49 | + |
| 50 | +@[to_additive (attr := simp)] |
| 51 | +theorem op_unop (S : Subsemigroup Mᵐᵒᵖ) : S.unop.op = S := rfl |
| 52 | + |
| 53 | +/-! ### Lattice results -/ |
| 54 | + |
| 55 | +@[to_additive] |
| 56 | +theorem op_le_iff {S₁ : Subsemigroup M} {S₂ : Subsemigroup Mᵐᵒᵖ} : S₁.op ≤ S₂ ↔ S₁ ≤ S₂.unop := |
| 57 | + MulOpposite.op_surjective.forall |
| 58 | + |
| 59 | +@[to_additive] |
| 60 | +theorem le_op_iff {S₁ : Subsemigroup Mᵐᵒᵖ} {S₂ : Subsemigroup M} : S₁ ≤ S₂.op ↔ S₁.unop ≤ S₂ := |
| 61 | + MulOpposite.op_surjective.forall |
| 62 | + |
| 63 | +@[to_additive (attr := simp)] |
| 64 | +theorem op_le_op_iff {S₁ S₂ : Subsemigroup M} : S₁.op ≤ S₂.op ↔ S₁ ≤ S₂ := |
| 65 | + MulOpposite.op_surjective.forall |
| 66 | + |
| 67 | +@[to_additive (attr := simp)] |
| 68 | +theorem unop_le_unop_iff {S₁ S₂ : Subsemigroup Mᵐᵒᵖ} : S₁.unop ≤ S₂.unop ↔ S₁ ≤ S₂ := |
| 69 | + MulOpposite.unop_surjective.forall |
| 70 | + |
| 71 | +/-- A subsemigroup `H` of `M` determines a subsemigroup `H.op` of the opposite semigroup `Mᵐᵒᵖ`. -/ |
| 72 | +@[to_additive (attr := simps) /-- An additive subsemigroup `H` of `M` determines an additive |
| 73 | + subsemigroup `H.op` of the opposite semigroup `Mᵐᵒᵖ`. -/] |
| 74 | +def opEquiv : Subsemigroup M ≃o Subsemigroup Mᵐᵒᵖ where |
| 75 | + toFun := Subsemigroup.op |
| 76 | + invFun := Subsemigroup.unop |
| 77 | + left_inv := unop_op |
| 78 | + right_inv := op_unop |
| 79 | + map_rel_iff' := op_le_op_iff |
| 80 | + |
| 81 | +@[to_additive] |
| 82 | +theorem op_injective : (@Subsemigroup.op M _).Injective := opEquiv.injective |
| 83 | + |
| 84 | +@[to_additive] |
| 85 | +theorem unop_injective : (@Subsemigroup.unop M _).Injective := opEquiv.symm.injective |
| 86 | + |
| 87 | +@[to_additive (attr := simp)] |
| 88 | +theorem op_inj {S T : Subsemigroup M} : S.op = T.op ↔ S = T := opEquiv.eq_iff_eq |
| 89 | + |
| 90 | +@[to_additive (attr := simp)] |
| 91 | +theorem unop_inj {S T : Subsemigroup Mᵐᵒᵖ} : S.unop = T.unop ↔ S = T := opEquiv.symm.eq_iff_eq |
| 92 | + |
| 93 | +@[to_additive (attr := simp)] |
| 94 | +theorem op_bot : (⊥ : Subsemigroup M).op = ⊥ := opEquiv.map_bot |
| 95 | + |
| 96 | +@[to_additive (attr := simp)] |
| 97 | +theorem op_eq_bot {S : Subsemigroup M} : S.op = ⊥ ↔ S = ⊥ := op_injective.eq_iff' op_bot |
| 98 | + |
| 99 | +@[to_additive (attr := simp)] |
| 100 | +theorem unop_bot : (⊥ : Subsemigroup Mᵐᵒᵖ).unop = ⊥ := opEquiv.symm.map_bot |
| 101 | + |
| 102 | +@[to_additive (attr := simp)] |
| 103 | +theorem unop_eq_bot {S : Subsemigroup Mᵐᵒᵖ} : S.unop = ⊥ ↔ S = ⊥ := unop_injective.eq_iff' unop_bot |
| 104 | + |
| 105 | +@[to_additive (attr := simp)] |
| 106 | +theorem op_top : (⊤ : Subsemigroup M).op = ⊤ := rfl |
| 107 | + |
| 108 | +@[to_additive (attr := simp)] |
| 109 | +theorem op_eq_top {S : Subsemigroup M} : S.op = ⊤ ↔ S = ⊤ := op_injective.eq_iff' op_top |
| 110 | + |
| 111 | +@[to_additive (attr := simp)] |
| 112 | +theorem unop_top : (⊤ : Subsemigroup Mᵐᵒᵖ).unop = ⊤ := rfl |
| 113 | + |
| 114 | +@[to_additive (attr := simp)] |
| 115 | +theorem unop_eq_top {S : Subsemigroup Mᵐᵒᵖ} : S.unop = ⊤ ↔ S = ⊤ := unop_injective.eq_iff' unop_top |
| 116 | + |
| 117 | +@[to_additive] |
| 118 | +theorem op_sup (S₁ S₂ : Subsemigroup M) : (S₁ ⊔ S₂).op = S₁.op ⊔ S₂.op := |
| 119 | + opEquiv.map_sup _ _ |
| 120 | + |
| 121 | +@[to_additive] |
| 122 | +theorem unop_sup (S₁ S₂ : Subsemigroup Mᵐᵒᵖ) : (S₁ ⊔ S₂).unop = S₁.unop ⊔ S₂.unop := |
| 123 | + opEquiv.symm.map_sup _ _ |
| 124 | + |
| 125 | +@[to_additive] |
| 126 | +theorem op_inf (S₁ S₂ : Subsemigroup M) : (S₁ ⊓ S₂).op = S₁.op ⊓ S₂.op := rfl |
| 127 | + |
| 128 | +@[to_additive] |
| 129 | +theorem unop_inf (S₁ S₂ : Subsemigroup Mᵐᵒᵖ) : (S₁ ⊓ S₂).unop = S₁.unop ⊓ S₂.unop := rfl |
| 130 | + |
| 131 | +@[to_additive] |
| 132 | +theorem op_sSup (S : Set (Subsemigroup M)) : (sSup S).op = sSup (.unop ⁻¹' S) := |
| 133 | + opEquiv.map_sSup_eq_sSup_symm_preimage _ |
| 134 | + |
| 135 | +@[to_additive] |
| 136 | +theorem unop_sSup (S : Set (Subsemigroup Mᵐᵒᵖ)) : (sSup S).unop = sSup (.op ⁻¹' S) := |
| 137 | + opEquiv.symm.map_sSup_eq_sSup_symm_preimage _ |
| 138 | + |
| 139 | +@[to_additive] |
| 140 | +theorem op_sInf (S : Set (Subsemigroup M)) : (sInf S).op = sInf (.unop ⁻¹' S) := |
| 141 | + opEquiv.map_sInf_eq_sInf_symm_preimage _ |
| 142 | + |
| 143 | +@[to_additive] |
| 144 | +theorem unop_sInf (S : Set (Subsemigroup Mᵐᵒᵖ)) : (sInf S).unop = sInf (.op ⁻¹' S) := |
| 145 | + opEquiv.symm.map_sInf_eq_sInf_symm_preimage _ |
| 146 | + |
| 147 | +@[to_additive] |
| 148 | +theorem op_iSup (S : ι → Subsemigroup M) : (iSup S).op = ⨆ i, (S i).op := opEquiv.map_iSup _ |
| 149 | + |
| 150 | +@[to_additive] |
| 151 | +theorem unop_iSup (S : ι → Subsemigroup Mᵐᵒᵖ) : (iSup S).unop = ⨆ i, (S i).unop := |
| 152 | + opEquiv.symm.map_iSup _ |
| 153 | + |
| 154 | +@[to_additive] |
| 155 | +theorem op_iInf (S : ι → Subsemigroup M) : (iInf S).op = ⨅ i, (S i).op := opEquiv.map_iInf _ |
| 156 | + |
| 157 | +@[to_additive] |
| 158 | +theorem unop_iInf (S : ι → Subsemigroup Mᵐᵒᵖ) : (iInf S).unop = ⨅ i, (S i).unop := |
| 159 | + opEquiv.symm.map_iInf _ |
| 160 | + |
| 161 | +@[to_additive] |
| 162 | +theorem op_closure (s : Set M) : (closure s).op = closure (MulOpposite.unop ⁻¹' s) := by |
| 163 | + simp_rw [closure, op_sInf, Set.preimage_setOf_eq, Subsemigroup.coe_unop] |
| 164 | + congr with a |
| 165 | + exact MulOpposite.unop_surjective.forall |
| 166 | + |
| 167 | +@[to_additive] |
| 168 | +theorem unop_closure (s : Set Mᵐᵒᵖ) : (closure s).unop = closure (MulOpposite.op ⁻¹' s) := by |
| 169 | + rw [← op_inj, op_unop, op_closure] |
| 170 | + simp_rw [Set.preimage_preimage, MulOpposite.op_unop, Set.preimage_id'] |
| 171 | + |
| 172 | +/-- Bijection between a subsemigroup `H` and its opposite. -/ |
| 173 | +@[to_additive (attr := simps!) /-- Bijection between an additive subsemigroup `H` and its opposite. |
| 174 | + -/] |
| 175 | +def equivOp (H : Subsemigroup M) : H ≃ H.op := |
| 176 | + MulOpposite.opEquiv.subtypeEquiv fun _ => Iff.rfl |
| 177 | + |
| 178 | +end Subsemigroup |
0 commit comments