@@ -155,7 +155,7 @@ scoped[ProbabilityTheory] notation3 X:50 " ⟂ᵢ " Y:50 => ProbabilityTheory.In
155155
156156section Definition_lemmas
157157variable {π : ι → Set (Set Ω)} {m : ι → MeasurableSpace Ω} {_ : MeasurableSpace Ω} {μ : Measure Ω}
158- {S : Finset ι} {s : ι → Set Ω}
158+ {S : Finset ι} {s : ι → Set Ω} {ι' : Type *} {g : ι' → ι}
159159
160160lemma iIndepSets_iff (π : ι → Set (Set Ω)) (μ : Measure Ω) :
161161 iIndepSets π μ ↔ ∀ (s : Finset ι) {f : ι → Set Ω} (_H : ∀ i, i ∈ s → f i ∈ π i),
@@ -283,6 +283,56 @@ lemma IndepFun.meas_inter [mβ : MeasurableSpace β] [mγ : MeasurableSpace γ]
283283 μ (s ∩ t) = μ s * μ t :=
284284 (IndepFun_iff _ _ _).1 hfg _ _ hs ht
285285
286+ lemma iIndepSets.precomp (hg : Function.Injective g) (h : iIndepSets π μ) :
287+ iIndepSets (π ∘ g) μ :=
288+ Kernel.iIndepSets.precomp hg h
289+
290+ lemma iIndepSets.of_precomp (hg : Function.Surjective g) (h : iIndepSets (π ∘ g) μ) :
291+ iIndepSets π μ :=
292+ Kernel.iIndepSets.of_precomp hg h
293+
294+ lemma iIndepSets_precomp_of_bijective (hg : Function.Bijective g) :
295+ iIndepSets (π ∘ g) μ ↔ iIndepSets π μ :=
296+ Kernel.iIndepSets_precomp_of_bijective hg
297+
298+ lemma iIndep.precomp (hg : Function.Injective g) (h : iIndep m μ) :
299+ iIndep (m ∘ g) μ :=
300+ Kernel.iIndep.precomp hg h
301+
302+ lemma iIndep.of_precomp (hg : Function.Surjective g) (h : iIndep (m ∘ g) μ) :
303+ iIndep m μ :=
304+ Kernel.iIndep.of_precomp hg h
305+
306+ lemma iIndep_precomp_of_bijective (hg : Function.Bijective g) :
307+ iIndep (m ∘ g) μ ↔ iIndep m μ :=
308+ Kernel.iIndep_precomp_of_bijective hg
309+
310+ lemma iIndepSet.precomp (hg : Function.Injective g) (h : iIndepSet s μ) :
311+ iIndepSet (s ∘ g) μ :=
312+ Kernel.iIndepSet.precomp hg h
313+
314+ lemma iIndepSet.of_precomp (hg : Function.Surjective g) (h : iIndepSet (s ∘ g) μ) :
315+ iIndepSet s μ :=
316+ Kernel.iIndepSet.of_precomp hg h
317+
318+ lemma iIndepSet_precomp_of_bijective (hg : Function.Bijective g) :
319+ iIndepSet (s ∘ g) μ ↔ iIndepSet s μ :=
320+ Kernel.iIndepSet_precomp_of_bijective hg
321+
322+ variable {β : ι → Type *} {m : ∀ i, MeasurableSpace (β i)} {f : ∀ i, Ω → β i}
323+
324+ lemma iIndepFun.precomp (hg : g.Injective) (h : iIndepFun f μ) :
325+ iIndepFun (m := fun i ↦ m (g i)) (fun i ↦ f (g i)) μ :=
326+ Kernel.iIndepFun.precomp hg h
327+
328+ lemma iIndepFun.of_precomp (hg : g.Surjective)
329+ (h : iIndepFun (m := fun i ↦ m (g i)) (fun i ↦ f (g i)) μ) : iIndepFun f μ :=
330+ Kernel.iIndepFun.of_precomp hg h
331+
332+ lemma iIndepFun_precomp_of_bijective (hg : g.Bijective) :
333+ iIndepFun (m := fun i ↦ m (g i)) (fun i ↦ f (g i)) μ ↔ iIndepFun f μ :=
334+ Kernel.iIndepFun_precomp_of_bijective hg
335+
286336end Definition_lemmas
287337
288338section Indep
@@ -818,18 +868,6 @@ lemma iIndepFun.indepFun_prodMk_prodMk₀ (h_indep : iIndepFun f μ) (hf : ∀ i
818868 IndepFun (fun a ↦ (f i a, f j a)) (fun a ↦ (f k a, f l a)) μ :=
819869 Kernel.iIndepFun.indepFun_prodMk_prodMk₀ h_indep (by simp [hf]) i j k l hik hil hjk hjl
820870
821- variable {ι' : Type *} {α : ι → Type *} [∀ i, MeasurableSpace (α i)]
822-
823- open Function in
824- lemma iIndepFun.precomp {g : ι' → ι} (hg : g.Injective) (h : iIndepFun f μ) :
825- iIndepFun (m := fun i ↦ m (g i)) (fun i ↦ f (g i)) μ := by
826- have : IsProbabilityMeasure μ := h.isProbabilityMeasure
827- nontriviality ι'
828- have A (x) : Function.invFun g (g x) = x := Function.leftInverse_invFun hg x
829- rw [iIndepFun_iff] at h ⊢
830- intro t s' hs'
831- simpa [A] using h (t.map ⟨g, hg⟩) (f' := fun i ↦ s' (invFun g i)) (by simpa [A] using hs')
832-
833871lemma iIndepFun_iff_finset : iIndepFun f μ ↔ ∀ s : Finset ι, iIndepFun (s.restrict f) μ where
834872 mp h s := h.precomp (g := ((↑) : s → ι)) Subtype.val_injective
835873 mpr h := by
@@ -839,30 +877,6 @@ lemma iIndepFun_iff_finset : iIndepFun f μ ↔ ∀ s : Finset ι, iIndepFun (s.
839877 rw [← Finset.prod_coe_sort, this]
840878 exact (h s).meas_iInter fun i ↦ hs i i.2
841879
842- lemma iIndepFun.of_precomp {g : ι' → ι} (hg : g.Surjective)
843- (h : iIndepFun (m := fun i ↦ m (g i)) (fun i ↦ f (g i)) μ) : iIndepFun f μ := by
844- have : IsProbabilityMeasure μ := h.isProbabilityMeasure
845- nontriviality ι
846- have := hg.nontrivial
847- classical
848- rw [iIndepFun_iff] at h ⊢
849- intro t s hs
850- have A (x) : g (Function.invFun g x) = x := Function.rightInverse_invFun hg x
851- have : ∀ i ∈ Finset.image (Function.invFun g) t,
852- @MeasurableSet _ (MeasurableSpace.comap (f <| g i) (m <| g i)) (s <| g i) := by
853- intro i hi
854- obtain ⟨j, hj, rfl⟩ := Finset.mem_image.mp hi
855- simpa [A] using (A j).symm ▸ hs j hj
856- have eq : ∏ i ∈ Finset.image (Function.invFun g) t, μ (s (g i)) = ∏ i ∈ t, μ (s i) := by
857- rw [Finset.prod_image (fun x hx y hy h => ?_), Finset.prod_congr rfl (fun x _ => by rw [A])]
858- rw [← A x, ← A y, h]
859- simpa [A, eq] using h (t.image (Function.invFun g)) (f' := fun i ↦ s (g i)) this
860-
861- lemma iIndepFun_precomp_of_bijective {g : ι' → ι} (hg : g.Bijective) :
862- iIndepFun (m := fun i ↦ m (g i)) (fun i ↦ f (g i)) μ ↔ iIndepFun f μ where
863- mp := .of_precomp hg.surjective
864- mpr := .precomp hg.injective
865-
866880end iIndepFun
867881
868882section Mul
0 commit comments