@@ -65,7 +65,7 @@ structure HasFiniteFPowerSeriesOnBall (f : E → F) (p : FormalMultilinearSeries
6565
6666theorem HasFiniteFPowerSeriesOnBall.mk' {f : E → F} {p : FormalMultilinearSeries 𝕜 E F} {x : E}
6767 {n : ℕ} {r : ℝ≥0 ∞} (finite : ∀ (m : ℕ), n ≤ m → p m = 0 ) (pos : 0 < r)
68- (sum_eq : ∀ y ∈ EMetric.ball 0 r, (∑ i ∈ Finset.range n, p i fun _ ↦ y) = f (x + y)) :
68+ (sum_eq : ∀ y ∈ Metric.eball 0 r, (∑ i ∈ Finset.range n, p i fun _ ↦ y) = f (x + y)) :
6969 HasFiniteFPowerSeriesOnBall f p x n r where
7070 r_le := p.radius_eq_top_of_eventually_eq_zero (Filter.eventually_atTop.mpr ⟨n, finite⟩) ▸ le_top
7171 r_pos := pos
@@ -129,7 +129,7 @@ theorem CPolynomialOn.analyticOn {s : Set E} (hf : CPolynomialOn 𝕜 f s) : Ana
129129 hf.analyticOnNhd.analyticOn
130130
131131theorem HasFiniteFPowerSeriesOnBall.congr (hf : HasFiniteFPowerSeriesOnBall f p x n r)
132- (hg : EqOn f g (EMetric.ball x r)) : HasFiniteFPowerSeriesOnBall g p x n r :=
132+ (hg : EqOn f g (Metric.eball x r)) : HasFiniteFPowerSeriesOnBall g p x n r :=
133133 ⟨hf.1 .congr hg, hf.finite⟩
134134
135135theorem HasFiniteFPowerSeriesOnBall.of_le {m n : ℕ}
@@ -210,7 +210,7 @@ theorem ContinuousLinearMap.comp_cpolynomialOn {s : Set E} (g : F →L[𝕜] G)
210210the `m`th partial sums of this power series at every point of the disk for `n ≤ m`. -/
211211theorem HasFiniteFPowerSeriesOnBall.eq_partialSum
212212 (hf : HasFiniteFPowerSeriesOnBall f p x n r) :
213- ∀ y ∈ EMetric.ball (0 : E) r, ∀ m, n ≤ m →
213+ ∀ y ∈ Metric.eball (0 : E) r, ∀ m, n ≤ m →
214214 f (x + y) = p.partialSum m y :=
215215 fun y hy m hm ↦ (hf.hasSum hy).unique (hasSum_sum_of_ne_finset_zero
216216 (f := fun m => p m (fun _ => y)) (s := Finset.range m)
@@ -220,23 +220,23 @@ theorem HasFiniteFPowerSeriesOnBall.eq_partialSum
220220/-- Variant of the previous result with the variable expressed as `y` instead of `x + y`. -/
221221theorem HasFiniteFPowerSeriesOnBall.eq_partialSum'
222222 (hf : HasFiniteFPowerSeriesOnBall f p x n r) :
223- ∀ y ∈ EMetric.ball x r, ∀ m, n ≤ m →
223+ ∀ y ∈ Metric.eball x r, ∀ m, n ≤ m →
224224 f y = p.partialSum m (y - x) := by
225225 intro y hy m hm
226- rw [EMetric.mem_ball , edist_eq_enorm_sub, ← mem_emetric_ball_zero_iff ] at hy
226+ rw [Metric.mem_eball , edist_eq_enorm_sub, ← mem_eball_zero_iff ] at hy
227227 rw [← (HasFiniteFPowerSeriesOnBall.eq_partialSum hf _ hy m hm), add_sub_cancel]
228228
229229/-! The particular cases where `f` has a finite power series bounded by `0` or `1`. -/
230230
231231/-- If `f` has a formal power series on a ball bounded by `0`, then `f` is equal to `0` on
232232the ball. -/
233233theorem HasFiniteFPowerSeriesOnBall.eq_zero_of_bound_zero
234- (hf : HasFiniteFPowerSeriesOnBall f pf x 0 r) : ∀ y ∈ EMetric.ball x r, f y = 0 := by
234+ (hf : HasFiniteFPowerSeriesOnBall f pf x 0 r) : ∀ y ∈ Metric.eball x r, f y = 0 := by
235235 intro y hy
236236 rw [hf.eq_partialSum' y hy 0 le_rfl, FormalMultilinearSeries.partialSum]
237237 simp only [Finset.range_zero, Finset.sum_empty]
238238
239- theorem HasFiniteFPowerSeriesOnBall.bound_zero_of_eq_zero (hf : ∀ y ∈ EMetric.ball x r, f y = 0 )
239+ theorem HasFiniteFPowerSeriesOnBall.bound_zero_of_eq_zero (hf : ∀ y ∈ Metric.eball x r, f y = 0 )
240240 (r_pos : 0 < r) (hp : ∀ n, p n = 0 ) : HasFiniteFPowerSeriesOnBall f p x 0 r := by
241241 refine ⟨⟨?_, r_pos, ?_⟩, fun n _ ↦ hp n⟩
242242 · rw [p.radius_eq_top_of_forall_image_add_eq_zero 0 (fun n ↦ by rw [add_zero]; exact hp n)]
@@ -245,23 +245,23 @@ theorem HasFiniteFPowerSeriesOnBall.bound_zero_of_eq_zero (hf : ∀ y ∈ EMetri
245245 rw [hf (x + y)]
246246 · convert hasSum_zero
247247 rw [hp, ContinuousMultilinearMap.zero_apply]
248- · rwa [EMetric.mem_ball , edist_eq_enorm_sub, add_comm, add_sub_cancel_right,
249- ← edist_zero_eq_enorm, ← EMetric.mem_ball ]
248+ · rwa [Metric.mem_eball , edist_eq_enorm_sub, add_comm, add_sub_cancel_right,
249+ ← edist_zero_eq_enorm, ← Metric.mem_eball ]
250250
251251/-- If `f` has a formal power series at `x` bounded by `0`, then `f` is equal to `0` in a
252252neighborhood of `x`. -/
253253theorem HasFiniteFPowerSeriesAt.eventually_zero_of_bound_zero
254254 (hf : HasFiniteFPowerSeriesAt f pf x 0 ) : f =ᶠ[𝓝 x] 0 :=
255- Filter.eventuallyEq_iff_exists_mem.mpr (let ⟨r, hf⟩ := hf; ⟨EMetric.ball x r,
256- EMetric.ball_mem_nhds x hf.r_pos, fun y hy ↦ hf.eq_zero_of_bound_zero y hy⟩)
255+ Filter.eventuallyEq_iff_exists_mem.mpr (let ⟨r, hf⟩ := hf; ⟨Metric.eball x r,
256+ Metric.eball_mem_nhds x hf.r_pos, fun y hy ↦ hf.eq_zero_of_bound_zero y hy⟩)
257257
258258/-- If `f` has a formal power series on a ball bounded by `1`, then `f` is constant equal
259259to `f x` on the ball. -/
260260theorem HasFiniteFPowerSeriesOnBall.eq_const_of_bound_one
261- (hf : HasFiniteFPowerSeriesOnBall f pf x 1 r) : ∀ y ∈ EMetric.ball x r, f y = f x := by
261+ (hf : HasFiniteFPowerSeriesOnBall f pf x 1 r) : ∀ y ∈ Metric.eball x r, f y = f x := by
262262 intro y hy
263263 rw [hf.eq_partialSum' y hy 1 le_rfl, hf.eq_partialSum' x
264- (by rw [EMetric.mem_ball , edist_self]; exact hf.r_pos) 1 le_rfl]
264+ (by rw [Metric.mem_eball , edist_self]; exact hf.r_pos) 1 le_rfl]
265265 simp only [FormalMultilinearSeries.partialSum, Finset.range_one, Finset.sum_singleton]
266266 congr
267267 apply funext
@@ -271,13 +271,13 @@ theorem HasFiniteFPowerSeriesOnBall.eq_const_of_bound_one
271271to `f x` in a neighborhood of `x`. -/
272272theorem HasFiniteFPowerSeriesAt.eventually_const_of_bound_one
273273 (hf : HasFiniteFPowerSeriesAt f pf x 1 ) : f =ᶠ[𝓝 x] (fun _ => f x) :=
274- Filter.eventuallyEq_iff_exists_mem.mpr (let ⟨r, hf⟩ := hf; ⟨EMetric.ball x r,
275- EMetric.ball_mem_nhds x hf.r_pos, fun y hy ↦ hf.eq_const_of_bound_one y hy⟩)
274+ Filter.eventuallyEq_iff_exists_mem.mpr (let ⟨r, hf⟩ := hf; ⟨Metric.eball x r,
275+ Metric.eball_mem_nhds x hf.r_pos, fun y hy ↦ hf.eq_const_of_bound_one y hy⟩)
276276
277277/-- If a function admits a finite power series expansion on a disk, then it is continuous there. -/
278278protected theorem HasFiniteFPowerSeriesOnBall.continuousOn
279279 (hf : HasFiniteFPowerSeriesOnBall f p x n r) :
280- ContinuousOn f (EMetric.ball x r) := hf.1 .continuousOn
280+ ContinuousOn f (Metric.eball x r) := hf.1 .continuousOn
281281
282282protected theorem HasFiniteFPowerSeriesAt.continuousAt (hf : HasFiniteFPowerSeriesAt f p x n) :
283283 ContinuousAt f x := hf.hasFPowerSeriesAt.continuousAt
@@ -316,14 +316,14 @@ protected theorem FormalMultilinearSeries.hasFiniteFPowerSeriesOnBall_of_finite
316316 hasSum {y} _ := by rw [zero_add]; exact p.hasSum_of_finite hn y
317317
318318theorem HasFiniteFPowerSeriesOnBall.sum (h : HasFiniteFPowerSeriesOnBall f p x n r) {y : E}
319- (hy : y ∈ EMetric.ball (0 : E) r) : f (x + y) = p.sum y :=
319+ (hy : y ∈ Metric.eball (0 : E) r) : f (x + y) = p.sum y :=
320320 (h.hasSum hy).tsum_eq.symm
321321
322322/-- The sum of a finite power series is continuous. -/
323323protected theorem FormalMultilinearSeries.continuousOn_of_finite
324324 (p : FormalMultilinearSeries 𝕜 E F) {n : ℕ} (hn : ∀ m, n ≤ m → p m = 0 ) :
325325 Continuous p.sum := by
326- rw [← continuousOn_univ, ← Metric.emetric_ball_top ]
326+ rw [← continuousOn_univ, ← Metric.eball_top ]
327327 exact (p.hasFiniteFPowerSeriesOnBall_of_finite hn).continuousOn
328328
329329end FiniteFPowerSeries
@@ -443,24 +443,24 @@ theorem HasFiniteFPowerSeriesOnBall.changeOrigin (hf : HasFiniteFPowerSeriesOnBa
443443 hasSum {z} hz := by
444444 have : f (x + y + z) =
445445 FormalMultilinearSeries.sum (FormalMultilinearSeries.changeOrigin p y) z := by
446- rw [mem_emetric_ball_zero_iff , lt_tsub_iff_right, add_comm] at hz
446+ rw [mem_eball_zero_iff , lt_tsub_iff_right, add_comm] at hz
447447 rw [p.changeOrigin_eval_of_finite hf.finite, add_assoc, hf.sum]
448- exact mem_emetric_ball_zero_iff .2 ((enorm_add_le _ _).trans_lt hz)
448+ exact mem_eball_zero_iff .2 ((enorm_add_le _ _).trans_lt hz)
449449 rw [this]
450450 apply (p.changeOrigin y).hasSum_of_finite fun _ => p.changeOrigin_finite_of_finite hf.finite
451451
452452/-- If a function admits a finite power series expansion `p` on an open ball `B (x, r)`, then
453453it is continuously polynomial at every point of this ball. -/
454454theorem HasFiniteFPowerSeriesOnBall.cpolynomialAt_of_mem
455- (hf : HasFiniteFPowerSeriesOnBall f p x n r) (h : y ∈ EMetric.ball x r) :
455+ (hf : HasFiniteFPowerSeriesOnBall f p x n r) (h : y ∈ Metric.eball x r) :
456456 CPolynomialAt 𝕜 f y := by
457457 have : (‖y - x‖₊ : ℝ≥0 ∞) < r := by simpa [edist_eq_enorm_sub] using h
458458 have := hf.changeOrigin this
459459 rw [add_sub_cancel] at this
460460 exact this.cpolynomialAt
461461
462462theorem HasFiniteFPowerSeriesOnBall.cpolynomialOn (hf : HasFiniteFPowerSeriesOnBall f p x n r) :
463- CPolynomialOn 𝕜 f (EMetric.ball x r) :=
463+ CPolynomialOn 𝕜 f (Metric.eball x r) :=
464464 fun _y hy => hf.cpolynomialAt_of_mem hy
465465
466466variable (𝕜 f)
@@ -470,7 +470,7 @@ variable (𝕜 f)
470470theorem isOpen_cpolynomialAt : IsOpen { x | CPolynomialAt 𝕜 f x } := by
471471 rw [isOpen_iff_mem_nhds]
472472 rintro x ⟨p, n, r, hr⟩
473- exact mem_of_superset (EMetric.ball_mem_nhds _ hr.r_pos) fun y hy => hr.cpolynomialAt_of_mem hy
473+ exact mem_of_superset (Metric.eball_mem_nhds _ hr.r_pos) fun y hy => hr.cpolynomialAt_of_mem hy
474474
475475variable {𝕜}
476476
0 commit comments