Skip to content

Commit c9486a6

Browse files
committed
feat(RingTheory/LocalRing): IsLocalRing.of_singleton_maximalSpectrum (#23994)
Add the fact that a ring with `MaximalSpectrum` that is a singleton is local.
1 parent 692dd55 commit c9486a6

File tree

1 file changed

+8
-0
lines changed
  • Mathlib/RingTheory/LocalRing/MaximalIdeal

1 file changed

+8
-0
lines changed

Mathlib/RingTheory/LocalRing/MaximalIdeal/Basic.lean

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -58,6 +58,14 @@ instance : Unique (MaximalSpectrum R) where
5858
default := ⟨maximalIdeal R, maximalIdeal.isMaximal R⟩
5959
uniq := fun I ↦ MaximalSpectrum.ext_iff.mpr <| eq_maximalIdeal I.isMaximal
6060

61+
omit [IsLocalRing R] in
62+
/-- If the maximal spectrum of a ring is a singleton, then the ring is local. -/
63+
theorem of_singleton_maximalSpectrum [Subsingleton (MaximalSpectrum R)]
64+
[Nonempty (MaximalSpectrum R)] : IsLocalRing R :=
65+
let m := Classical.arbitrary (MaximalSpectrum R)
66+
.of_unique_max_ideal ⟨m.asIdeal, m.isMaximal,
67+
fun I hI ↦ MaximalSpectrum.mk.inj <| Subsingleton.elim ⟨I, hI⟩ m⟩
68+
6169
theorem le_maximalIdeal {J : Ideal R} (hJ : J ≠ ⊤) : J ≤ maximalIdeal R := by
6270
rcases Ideal.exists_le_maximal J hJ with ⟨M, hM1, hM2⟩
6371
rwa [← eq_maximalIdeal hM1]

0 commit comments

Comments
 (0)