Skip to content

Commit da367fd

Browse files
committed
chore: uniformize theorem naming (#32726)
Following a suggestion made by @j-loreaux in the review of an earlier PR, rename several of the theorems introduced lately in `Mathlib/Analysis/Complex/ValueDistribution/*`.
1 parent 2f7cf63 commit da367fd

File tree

3 files changed

+46
-20
lines changed

3 files changed

+46
-20
lines changed

Mathlib/Analysis/Complex/ValueDistribution/CharacteristicFunction.lean

Lines changed: 20 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -74,49 +74,59 @@ lemma characteristic_sub_characteristic_eq_proximity_sub_proximity (h : Meromorp
7474
For `1 ≤ r`, the characteristic function for the zeros of `f * g` is less than or equal to the sum
7575
of the characteristic functions for the zeros of `f` and `g`, respectively.
7676
-/
77-
theorem characteristic_zero_mul_le {f₁ f₂ : ℂ → ℂ} {r : ℝ} (hr : 1 ≤ r)
77+
theorem characteristic_mul_zero_le {f₁ f₂ : ℂ → ℂ} {r : ℝ} (hr : 1 ≤ r)
7878
(h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
7979
(h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
8080
characteristic (f₁ * f₂) 0 r ≤ (characteristic f₁ 0 + characteristic f₂ 0) r := by
8181
simp only [characteristic, Pi.add_apply]
8282
rw [add_add_add_comm]
83-
apply add_le_add (proximity_zero_mul_le h₁f₁ h₁f₂ r)
84-
(logCounting_zero_mul_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂)
83+
apply add_le_add (proximity_mul_zero_le h₁f₁ h₁f₂ r)
84+
(logCounting_mul_zero_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂)
85+
86+
@[deprecated (since := "2025-12-11")] alias characteristic_zero_mul_le := characteristic_mul_zero_le
8587

8688
/--
8789
Asymptotically, the characteristic function for the zeros of `f * g` is less than or equal to the
8890
sum of the characteristic functions for the zeros of `f` and `g`, respectively.
8991
-/
90-
theorem characteristic_zero_mul_eventually_le {f₁ f₂ : ℂ → ℂ}
92+
theorem characteristic_mul_zero_eventuallyLE {f₁ f₂ : ℂ → ℂ}
9193
(h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
9294
(h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
9395
characteristic (f₁ * f₂) 0 ≤ᶠ[Filter.atTop] characteristic f₁ 0 + characteristic f₂ 0 := by
9496
filter_upwards [Filter.eventually_ge_atTop 1]
95-
exact fun _ hr ↦ characteristic_zero_mul_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
97+
exact fun _ hr ↦ characteristic_mul_zero_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
98+
99+
@[deprecated (since := "2025-12-11")]
100+
alias characteristic_zero_mul_eventually_le := characteristic_mul_zero_eventuallyLE
96101

97102
/--
98103
For `1 ≤ r`, the characteristic function for the poles of `f * g` is less than or equal to the sum
99104
of the characteristic functions for the poles of `f` and `g`, respectively.
100105
-/
101-
theorem characteristic_top_mul_le {f₁ f₂ : ℂ → ℂ} {r : ℝ} (hr : 1 ≤ r)
106+
theorem characteristic_mul_top_le {f₁ f₂ : ℂ → ℂ} {r : ℝ} (hr : 1 ≤ r)
102107
(h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
103108
(h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
104109
characteristic (f₁ * f₂) ⊤ r ≤ (characteristic f₁ ⊤ + characteristic f₂ ⊤) r := by
105110
simp only [characteristic, Pi.add_apply]
106111
rw [add_add_add_comm]
107-
apply add_le_add (proximity_top_mul_le h₁f₁ h₁f₂ r)
108-
(logCounting_top_mul_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂)
112+
apply add_le_add (proximity_mul_top_le h₁f₁ h₁f₂ r)
113+
(logCounting_mul_top_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂)
114+
115+
@[deprecated (since := "2025-12-11")] alias characteristic_top_mul_le := characteristic_mul_top_le
109116

110117
/--
111118
Asymptotically, the characteristic function for the poles of `f * g` is less than or equal to the
112119
sum of the characteristic functions for the poles of `f` and `g`, respectively.
113120
-/
114-
theorem characteristic_top_mul_eventually_le {f₁ f₂ : ℂ → ℂ}
121+
theorem characteristic_mul_top_eventuallyLE {f₁ f₂ : ℂ → ℂ}
115122
(h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
116123
(h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
117124
characteristic (f₁ * f₂) ⊤ ≤ᶠ[Filter.atTop] characteristic f₁ ⊤ + characteristic f₂ ⊤ := by
118125
filter_upwards [Filter.eventually_ge_atTop 1]
119-
exact fun _ hr ↦ characteristic_top_mul_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
126+
exact fun _ hr ↦ characteristic_mul_top_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
127+
128+
@[deprecated (since := "2025-12-11")]
129+
alias characteristic_top_mul_eventually_le := characteristic_mul_top_eventuallyLE
120130

121131
/--
122132
For natural numbers `n`, the characteristic function for the zeros of `f ^ n` equals `n` times the

Mathlib/Analysis/Complex/ValueDistribution/CountingFunction.lean

Lines changed: 19 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -149,12 +149,14 @@ theorem logCounting_le {E : Type*} [NormedAddCommGroup E] [ProperSpace E]
149149
/--
150150
The logarithmic counting function respects the `≤` relation asymptotically.
151151
-/
152-
theorem logCounting_eventually_le {E : Type*} [NormedAddCommGroup E] [ProperSpace E]
152+
theorem logCounting_eventuallyLE {E : Type*} [NormedAddCommGroup E] [ProperSpace E]
153153
{f₁ f₂ : locallyFinsuppWithin (univ : Set E) ℤ} (h : f₁ ≤ f₂) :
154154
logCounting f₁ ≤ᶠ[Filter.atTop] logCounting f₂ := by
155155
filter_upwards [Filter.eventually_ge_atTop 1]
156156
exact fun _ hr ↦ logCounting_le h hr
157157

158+
@[deprecated (since := "2025-12-11")] alias logCounting_eventually_le := logCounting_eventuallyLE
159+
158160
end Function.locallyFinsuppWithin
159161

160162
/-!
@@ -354,7 +356,7 @@ Then,
354356
355357
But `log r` is negative for small `r`.
356358
-/
357-
theorem logCounting_zero_mul_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1 ≤ r)
359+
theorem logCounting_mul_zero_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1 ≤ r)
358360
(h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
359361
(h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
360362
logCounting (f₁ * f₂) 0 r ≤ (logCounting f₁ 0 + logCounting f₂ 0) r := by
@@ -364,22 +366,27 @@ theorem logCounting_zero_mul_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1
364366
apply Function.locallyFinsuppWithin.logCounting_le _ hr
365367
apply Function.locallyFinsuppWithin.posPart_add
366368

369+
@[deprecated (since := "2025-12-11")] alias logCounting_zero_mul_le := logCounting_mul_zero_le
370+
367371
/--
368372
Asymptotically, the logarithmic counting function for the zeros of `f * g` is less than or equal to
369373
the sum of the logarithmic counting functions for the zeros of `f` and `g`, respectively.
370374
-/
371-
theorem logCounting_zero_mul_eventually_le {f₁ f₂ : 𝕜 → 𝕜}
375+
theorem logCounting_mul_zero_eventuallyLE {f₁ f₂ : 𝕜 → 𝕜}
372376
(h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
373377
(h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
374378
logCounting (f₁ * f₂) 0 ≤ᶠ[Filter.atTop] logCounting f₁ 0 + logCounting f₂ 0 := by
375379
filter_upwards [Filter.eventually_ge_atTop 1]
376-
exact fun _ hr ↦ logCounting_zero_mul_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
380+
exact fun _ hr ↦ logCounting_mul_zero_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
381+
382+
@[deprecated (since := "2025-12-11")]
383+
alias logCounting_zero_mul_eventually_le := logCounting_mul_zero_eventuallyLE
377384

378385
/--
379386
For `1 ≤ r`, the logarithmic counting function for the poles of `f * g` is less than or equal to the
380387
sum of the logarithmic counting functions for the poles of `f` and `g`, respectively.
381388
-/
382-
theorem logCounting_top_mul_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1 ≤ r)
389+
theorem logCounting_mul_top_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1 ≤ r)
383390
(h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
384391
(h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
385392
logCounting (f₁ * f₂) ⊤ r ≤ (logCounting f₁ ⊤ + logCounting f₂ ⊤) r := by
@@ -389,16 +396,21 @@ theorem logCounting_top_mul_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1 ≤
389396
apply Function.locallyFinsuppWithin.logCounting_le _ hr
390397
apply Function.locallyFinsuppWithin.negPart_add
391398

399+
@[deprecated (since := "2025-12-11")] alias logCounting_top_mul_le := logCounting_mul_top_le
400+
392401
/--
393402
Asymptotically, the logarithmic counting function for the zeros of `f * g` is less than or equal to
394403
the sum of the logarithmic counting functions for the zeros of `f` and `g`, respectively.
395404
-/
396-
theorem logCounting_top_mul_eventually_le {f₁ f₂ : 𝕜 → 𝕜}
405+
theorem logCounting_mul_top_eventuallyLE {f₁ f₂ : 𝕜 → 𝕜}
397406
(h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
398407
(h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
399408
logCounting (f₁ * f₂) ⊤ ≤ᶠ[Filter.atTop] logCounting f₁ ⊤ + logCounting f₂ ⊤ := by
400409
filter_upwards [Filter.eventually_ge_atTop 1]
401-
exact fun _ hr ↦ logCounting_top_mul_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
410+
exact fun _ hr ↦ logCounting_mul_top_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
411+
412+
@[deprecated (since := "2025-12-11")]
413+
alias logCounting_top_mul_eventually_le := logCounting_mul_top_eventuallyLE
402414

403415
/--
404416
For natural numbers `n`, the logarithmic counting function for the zeros of `f ^ n` equals `n`

Mathlib/Analysis/Complex/ValueDistribution/ProximityFunction.lean

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -157,7 +157,7 @@ theorem proximity_add_top_le [NormedSpace ℂ E] {f₁ f₂ : ℂ → E} (h₁f
157157
The proximity function `f * g` at `⊤` is less than or equal to the sum of the proximity functions of
158158
`f` and `g`, respectively.
159159
-/
160-
theorem proximity_top_mul_le {f₁ f₂ : ℂ → ℂ} (h₁f₁ : MeromorphicOn f₁ Set.univ)
160+
theorem proximity_mul_top_le {f₁ f₂ : ℂ → ℂ} (h₁f₁ : MeromorphicOn f₁ Set.univ)
161161
(h₁f₂ : MeromorphicOn f₂ Set.univ) :
162162
proximity (f₁ * f₂) ⊤ ≤ (proximity f₁ ⊤) + (proximity f₂ ⊤) := by
163163
calc proximity (f₁ * f₂) ⊤
@@ -179,20 +179,24 @@ theorem proximity_top_mul_le {f₁ f₂ : ℂ → ℂ} (h₁f₁ : MeromorphicOn
179179
· exact circleIntegrable_posLog_norm_meromorphicOn (fun x a ↦ h₁f₂ x trivial)
180180
_ = (proximity f₁ ⊤) + (proximity f₂ ⊤) := rfl
181181

182+
@[deprecated (since := "2025-12-11")] alias proximity_top_mul_le := proximity_mul_top_le
183+
182184
/--
183185
The proximity function `f * g` at `0` is less than or equal to the sum of the proximity functions of
184186
`f` and `g`, respectively.
185187
-/
186-
theorem proximity_zero_mul_le {f₁ f₂ : ℂ → ℂ} (h₁f₁ : MeromorphicOn f₁ Set.univ)
188+
theorem proximity_mul_zero_le {f₁ f₂ : ℂ → ℂ} (h₁f₁ : MeromorphicOn f₁ Set.univ)
187189
(h₁f₂ : MeromorphicOn f₂ Set.univ) :
188190
proximity (f₁ * f₂) 0 ≤ (proximity f₁ 0) + (proximity f₂ 0) := by
189191
calc proximity (f₁ * f₂) 0
190192
_ ≤ (proximity f₁⁻¹ ⊤) + (proximity f₂⁻¹ ⊤) := by
191193
rw [← proximity_inv, mul_inv]
192-
apply proximity_top_mul_le (MeromorphicOn.inv_iff.mpr h₁f₁) (MeromorphicOn.inv_iff.mpr h₁f₂)
194+
apply proximity_mul_top_le (MeromorphicOn.inv_iff.mpr h₁f₁) (MeromorphicOn.inv_iff.mpr h₁f₂)
193195
_ = (proximity f₁ 0) + (proximity f₂ 0) := by
194196
rw [proximity_inv, proximity_inv]
195197

198+
@[deprecated (since := "2025-12-11")] alias proximity_zero_mul_le := proximity_mul_zero_le
199+
196200
/--
197201
For natural numbers `n`, the proximity function of `f ^ n` at `⊤` equals `n` times the proximity
198202
function of `f` at `⊤`.

0 commit comments

Comments
 (0)