@@ -149,12 +149,14 @@ theorem logCounting_le {E : Type*} [NormedAddCommGroup E] [ProperSpace E]
149149/--
150150The logarithmic counting function respects the `≤` relation asymptotically.
151151-/
152- theorem logCounting_eventually_le {E : Type *} [NormedAddCommGroup E] [ProperSpace E]
152+ theorem logCounting_eventuallyLE {E : Type *} [NormedAddCommGroup E] [ProperSpace E]
153153 {f₁ f₂ : locallyFinsuppWithin (univ : Set E) ℤ} (h : f₁ ≤ f₂) :
154154 logCounting f₁ ≤ᶠ[Filter.atTop] logCounting f₂ := by
155155 filter_upwards [Filter.eventually_ge_atTop 1 ]
156156 exact fun _ hr ↦ logCounting_le h hr
157157
158+ @[deprecated (since := "2025-12-11")] alias logCounting_eventually_le := logCounting_eventuallyLE
159+
158160end Function.locallyFinsuppWithin
159161
160162/-!
@@ -354,7 +356,7 @@ Then,
354356
355357 But `log r` is negative for small `r`.
356358-/
357- theorem logCounting_zero_mul_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1 ≤ r)
359+ theorem logCounting_mul_zero_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1 ≤ r)
358360 (h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
359361 (h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
360362 logCounting (f₁ * f₂) 0 r ≤ (logCounting f₁ 0 + logCounting f₂ 0 ) r := by
@@ -364,22 +366,27 @@ theorem logCounting_zero_mul_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1
364366 apply Function.locallyFinsuppWithin.logCounting_le _ hr
365367 apply Function.locallyFinsuppWithin.posPart_add
366368
369+ @[deprecated (since := "2025-12-11")] alias logCounting_zero_mul_le := logCounting_mul_zero_le
370+
367371/--
368372Asymptotically, the logarithmic counting function for the zeros of `f * g` is less than or equal to
369373the sum of the logarithmic counting functions for the zeros of `f` and `g`, respectively.
370374-/
371- theorem logCounting_zero_mul_eventually_le {f₁ f₂ : 𝕜 → 𝕜}
375+ theorem logCounting_mul_zero_eventuallyLE {f₁ f₂ : 𝕜 → 𝕜}
372376 (h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
373377 (h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
374378 logCounting (f₁ * f₂) 0 ≤ᶠ[Filter.atTop] logCounting f₁ 0 + logCounting f₂ 0 := by
375379 filter_upwards [Filter.eventually_ge_atTop 1 ]
376- exact fun _ hr ↦ logCounting_zero_mul_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
380+ exact fun _ hr ↦ logCounting_mul_zero_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
381+
382+ @[deprecated (since := "2025-12-11")]
383+ alias logCounting_zero_mul_eventually_le := logCounting_mul_zero_eventuallyLE
377384
378385/--
379386For `1 ≤ r`, the logarithmic counting function for the poles of `f * g` is less than or equal to the
380387sum of the logarithmic counting functions for the poles of `f` and `g`, respectively.
381388-/
382- theorem logCounting_top_mul_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1 ≤ r)
389+ theorem logCounting_mul_top_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1 ≤ r)
383390 (h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
384391 (h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
385392 logCounting (f₁ * f₂) ⊤ r ≤ (logCounting f₁ ⊤ + logCounting f₂ ⊤) r := by
@@ -389,16 +396,21 @@ theorem logCounting_top_mul_le {f₁ f₂ : 𝕜 → 𝕜} {r : ℝ} (hr : 1 ≤
389396 apply Function.locallyFinsuppWithin.logCounting_le _ hr
390397 apply Function.locallyFinsuppWithin.negPart_add
391398
399+ @[deprecated (since := "2025-12-11")] alias logCounting_top_mul_le := logCounting_mul_top_le
400+
392401/--
393402Asymptotically, the logarithmic counting function for the zeros of `f * g` is less than or equal to
394403the sum of the logarithmic counting functions for the zeros of `f` and `g`, respectively.
395404-/
396- theorem logCounting_top_mul_eventually_le {f₁ f₂ : 𝕜 → 𝕜}
405+ theorem logCounting_mul_top_eventuallyLE {f₁ f₂ : 𝕜 → 𝕜}
397406 (h₁f₁ : MeromorphicOn f₁ Set.univ) (h₂f₁ : ∀ z, meromorphicOrderAt f₁ z ≠ ⊤)
398407 (h₁f₂ : MeromorphicOn f₂ Set.univ) (h₂f₂ : ∀ z, meromorphicOrderAt f₂ z ≠ ⊤) :
399408 logCounting (f₁ * f₂) ⊤ ≤ᶠ[Filter.atTop] logCounting f₁ ⊤ + logCounting f₂ ⊤ := by
400409 filter_upwards [Filter.eventually_ge_atTop 1 ]
401- exact fun _ hr ↦ logCounting_top_mul_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
410+ exact fun _ hr ↦ logCounting_mul_top_le hr h₁f₁ h₂f₁ h₁f₂ h₂f₂
411+
412+ @[deprecated (since := "2025-12-11")]
413+ alias logCounting_top_mul_eventually_le := logCounting_mul_top_eventuallyLE
402414
403415/--
404416For natural numbers `n`, the logarithmic counting function for the zeros of `f ^ n` equals `n`
0 commit comments