Notes, Codes, and Tutorials for the Deep Learning Course at ChinaHadoop
注意每一份代码分别有Jupyter Notebook, Python, 以及HTML三种形式,大家可以按照自己的需求阅读,学习或运行。 运行时需要注意anaconda的版本问题,anaconda2-5.0.0与anaconda3-5.0.0分别对应python2.7与python3.6环境。
重要参考资料:
学习资料:
- Effective TensorFlow - TensorFlow tutorials and best practices.
- Finch - Many Machine Intelligence models implemented (mainly tensorflow, sometimes pytorch / mxnet)
- Pytorch Tutorials - PyTorch Tutorial for Deep Learning Researchers.
- MXNet the straight dope - An interactive book on deep learning. Much easy, so MXNet. Wow.
代码示例:TensorFlow基础与线性回归模型(TensorFlow, PyTorch)
- MNIST数据集演示
- TensorFlow基础
- 线性回归模型-TensorFlow
- 线性回归模型-PyTorch
- 线性回归模型-MXNet (contributed by LinkHS)
代码示例:K近邻算法,线性分类,以及多层神经网络(TensorFlow, PyTorch)
- K近邻算法在图像分类上的应用-TensorFlow
- K近邻算法在图像分类上的应用-PyTorch (contributed by Johnny Chen)
- 多层神经网络示例-TensorFlow
- 多层神经网络示例-PyTorch
代码示例:卷积神经网络的基础实现(TensorFlow)
代码示例:卷积神经网络的进阶实现(TensorFlow)
代码示例:深度神经网络-图像识别与分类(TensorFlow, PyTorch)
- 安装TensorLayer (中文文档参见此处,此后复杂实现均推荐使用TensorLayer高级API库,同时可以结合TF-Slim与Keras)
pip install git+https://github.com/zsdonghao/tensorlayer.git
- 安装OpenCV python接口
conda install -c menpo opencv3 
或
pip install opencv-python
- 所需数据集下载:data.zip: [微云][百度云] (覆盖./05_Image_recognition_and_classification/data文件夹)
- 所需模型下载: vgg19.npz[微云][百度云] (放置于./05_Image_recognition_and_classification文件夹下)
- 所需模型下载:inception_v3.ckpt[微云][百度云] (放置于./05_Image_recognition_and_classification文件夹下)
- Class Activation Mapping (CAM)示例 (完整实现可参考此处)
代码示例:目标检测模型示例 (TensorFlow, PyTorch)
- 
所需模型下载: ssd_mobilenet_v1_coco_11_06_2017: [微云] (解压并置于06_Object_detection/Object_Detection_Tensorflow_API_demo/object_detection/文件夹下)
- 
[ SSD: Single Shot Multibox Detector] (TensorFlow实现, PyTorch实现)
- 
[ YOLO,YOLOv2] (TensorFlow实现, PyTorch实现)
代码示例:目标追踪与目标分割
- 
目标追踪 - [ GOTURN](TensorFlow实现, Plain Python实现, Original C++实现)
- 
目标分割 - [ FCN](TensorFlow实现, PyTorch实现)
- 
目标分割 - [ Mask-RCNN](TensorFlow实现, PyTorch实现)
代码示例:循环神经网络
- 
循环神经网络, RNN- [TensorFlow, Pytorch]
- 
双向循环神经网络, Bidirectional-RNN- [TensorFlow, Pytorch]
- 
动态循环神经网络, Dynamic-RNN- [TensorFlow]
- 
自动编码器, AutoEncoder- [TensorFlow]
- 
变分自动编码器, Variational AutoEncoder- [TensorFlow]
- 
图片标注, Image Captioning- [TensorFlow, PyTorch]
- 
视频标注, Video Captioning- [TensorFlow]
代码示例:生成对抗网络
- 
生成对抗网络, GAN- [TensorFlow, PyTorch]
- 
深度卷积生成对抗网络, DCGAN- [TensorFlow]
- 
Pix2Pix,CycleGAN- [PyTorch]
- 
StackGAN- [TensorFlow, PyTorch]
- 
Basic Reinforcement Learning- [basic_reinforcement_learning]
- 
Applied Reinfocement Learning- [applied-reinforcement-learning]
- 
Oreilly RL Tutorial- [oreilly-rl-tutorial]