-
Notifications
You must be signed in to change notification settings - Fork 15.3k
[mlir][tosa] Introduce arith.constant -> tosa.const normalization pass #168370
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Conversation
Add a standalone pass that rewrites tensor-valued `arith.constant` ops into `tosa.const`, normalize the TOSA backend contract. Co-authored-by: Shubham <shubham@arm.com> Signed-off-by: Vitalii Shutov <vitalii.shutov@arm.com> Change-Id: I4e71926107633007a71bd1fcc3311a5da6d38849
|
@llvm/pr-subscribers-mlir-tosa @llvm/pr-subscribers-mlir Author: Vitalii Shutov (Lallapallooza) ChangesAdd a standalone pass that rewrites tensor-valued Full diff: https://github.com/llvm/llvm-project/pull/168370.diff 4 Files Affected:
diff --git a/mlir/include/mlir/Dialect/Tosa/Transforms/Passes.td b/mlir/include/mlir/Dialect/Tosa/Transforms/Passes.td
index 14b00b04ccc18..34572c5c4d131 100644
--- a/mlir/include/mlir/Dialect/Tosa/Transforms/Passes.td
+++ b/mlir/include/mlir/Dialect/Tosa/Transforms/Passes.td
@@ -105,6 +105,15 @@ def TosaReduceTransposes : Pass<"tosa-reduce-transposes", "func::FuncOp"> {
}];
}
+def TosaArithConstantToTosaConstPass
+ : Pass<"tosa-arith-const-to-tosa-const", "func::FuncOp"> {
+ let summary = "Convert tensor arith.constant operations into tosa.const";
+ let description = [{
+ Normalizes tensor-valued arith.constant operations into tosa.const so that
+ subsequent TOSA passes operate on a consistent representation of constants.
+ }];
+}
+
def TosaConvertIntegerTypeToSignless : Pass<"tosa-convert-integer-type-to-signless", "func::FuncOp"> {
let summary = "Convert integer types to signless";
let description = [{
diff --git a/mlir/lib/Dialect/Tosa/Transforms/CMakeLists.txt b/mlir/lib/Dialect/Tosa/Transforms/CMakeLists.txt
index 41b338d6e7189..46c299834e2df 100644
--- a/mlir/lib/Dialect/Tosa/Transforms/CMakeLists.txt
+++ b/mlir/lib/Dialect/Tosa/Transforms/CMakeLists.txt
@@ -1,5 +1,6 @@
add_mlir_dialect_library(MLIRTosaTransforms
TosaAttachTarget.cpp
+ TosaArithConstantToConst.cpp
TosaConvertIntegerTypeToSignless.cpp
TosaDecomposeTransposeConv.cpp
TosaDecomposeDepthwise.cpp
diff --git a/mlir/lib/Dialect/Tosa/Transforms/TosaArithConstantToConst.cpp b/mlir/lib/Dialect/Tosa/Transforms/TosaArithConstantToConst.cpp
new file mode 100644
index 0000000000000..8ddde9c05724e
--- /dev/null
+++ b/mlir/lib/Dialect/Tosa/Transforms/TosaArithConstantToConst.cpp
@@ -0,0 +1,126 @@
+//===- TosaArithConstantToConst.cpp ---------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a pass that converts tensor-valued arith.constant ops
+// into tosa.const so that TOSA pipelines operate on a uniform constant form.
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Tosa/Transforms/Passes.h"
+
+#include "mlir/Dialect/Arith/IR/Arith.h"
+#include "mlir/Dialect/Func/IR/FuncOps.h"
+#include "mlir/Dialect/Quant/IR/QuantTypes.h"
+#include "mlir/Dialect/Tosa/IR/TosaOps.h"
+#include "mlir/IR/BuiltinAttributes.h"
+#include "mlir/IR/BuiltinTypes.h"
+#include "mlir/IR/PatternMatch.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+
+namespace mlir {
+namespace tosa {
+#define GEN_PASS_DEF_TOSAARITHCONSTANTTOTOSACONSTPASS
+#include "mlir/Dialect/Tosa/Transforms/Passes.h.inc"
+} // namespace tosa
+} // namespace mlir
+
+using namespace mlir;
+using namespace mlir::tosa;
+
+namespace {
+
+// NOTE: TOSA pipelines already lower their constants through shared Arith
+// folding passes, so tensor literals often come back as `arith.constant` even
+// after the IR is otherwise TOSA-only. Keep this normalization with the rest of
+// the TOSA transforms so any client can re-establish a canonical `tosa.const`
+// representation without needing a full Arith->TOSA conversion library.
+
+/// Returns true when `elementType` is natively representable by tosa.const.
+static bool isSupportedElementType(Type elementType) {
+ if (isa<FloatType>(elementType))
+ return true;
+
+ if (auto intType = dyn_cast<IntegerType>(elementType))
+ return intType.isSignless() || intType.isUnsigned();
+
+ if (isa<quant::QuantizedType>(elementType))
+ return true;
+
+ if (isa<tosa::mxint8Type>(elementType))
+ return true;
+
+ return false;
+}
+
+class ArithConstantToTosaConst : public OpRewritePattern<arith::ConstantOp> {
+public:
+ using OpRewritePattern::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(arith::ConstantOp constOp,
+ PatternRewriter &rewriter) const override {
+ // TOSA constant verification requires a ranked, statically shaped tensor.
+ auto resultType = dyn_cast<RankedTensorType>(constOp.getResult().getType());
+ if (!resultType || !resultType.hasStaticShape())
+ return failure();
+
+ if (!isSupportedElementType(resultType.getElementType()))
+ return failure();
+
+ Attribute attr = constOp.getValueAttr();
+ auto elementsAttr = dyn_cast<ElementsAttr>(attr);
+ if (!elementsAttr)
+ return failure();
+
+ auto attrType = dyn_cast<RankedTensorType>(elementsAttr.getType());
+ if (!attrType || !attrType.hasStaticShape())
+ return failure();
+
+ if (attrType != resultType) {
+ // Allow reshape when the payload can be reinterpreted without altering
+ // the number of elements or element type. Dense resource attributes
+ // cannot be reshaped losslessly, so bail out in that case.
+ if (!isa<DenseElementsAttr>(elementsAttr))
+ return failure();
+
+ if (attrType.getElementType() != resultType.getElementType())
+ return failure();
+
+ auto denseAttr = cast<DenseElementsAttr>(elementsAttr);
+ if (denseAttr.getNumElements() != resultType.getNumElements())
+ return failure();
+
+ elementsAttr = denseAttr.reshape(resultType);
+ }
+
+ auto newConst = tosa::ConstOp::create(rewriter, constOp.getLoc(),
+ resultType, elementsAttr);
+ rewriter.replaceOp(constOp, newConst.getResult());
+ return success();
+ }
+};
+
+struct TosaArithConstantToTosaConstPass
+ : public tosa::impl::TosaArithConstantToTosaConstPassBase<
+ TosaArithConstantToTosaConstPass> {
+ using Base::Base;
+
+ void getDependentDialects(DialectRegistry ®istry) const override {
+ registry.insert<arith::ArithDialect, tosa::TosaDialect>();
+ }
+
+ void runOnOperation() override {
+ auto *ctx = &getContext();
+ RewritePatternSet patterns(ctx);
+ patterns.add<ArithConstantToTosaConst>(ctx);
+
+ if (failed(applyPatternsGreedily(getOperation(), std::move(patterns))))
+ signalPassFailure();
+ }
+};
+
+} // namespace
diff --git a/mlir/test/Dialect/Tosa/tosa-arith-const-to-tosa-const.mlir b/mlir/test/Dialect/Tosa/tosa-arith-const-to-tosa-const.mlir
new file mode 100644
index 0000000000000..3f54a68ed3c00
--- /dev/null
+++ b/mlir/test/Dialect/Tosa/tosa-arith-const-to-tosa-const.mlir
@@ -0,0 +1,110 @@
+// RUN: mlir-opt %s --tosa-arith-const-to-tosa-const --split-input-file | FileCheck %s
+
+// CHECK-LABEL: func.func @rewrite_f32_tensor
+// CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[1.000000e+00, 2.000000e+00]> : tensor<2xf32>}> : () -> tensor<2xf32>
+// CHECK: return %[[CST]]
+func.func @rewrite_f32_tensor() -> tensor<2xf32> {
+ %c = arith.constant dense<[1.000000e+00, 2.000000e+00]> : tensor<2xf32>
+ return %c : tensor<2xf32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @rewrite_i32_tensor
+// CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[1, 0, -1]> : tensor<3xi32>}> : () -> tensor<3xi32>
+// CHECK: return %[[CST]]
+func.func @rewrite_i32_tensor() -> tensor<3xi32> {
+ %c = arith.constant dense<[1, 0, -1]> : tensor<3xi32>
+ return %c : tensor<3xi32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @rewrite_i1_tensor
+// CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[true, false]> : tensor<2xi1>}> : () -> tensor<2xi1>
+func.func @rewrite_i1_tensor() -> tensor<2xi1> {
+ %c = arith.constant dense<[true, false]> : tensor<2xi1>
+ return %c : tensor<2xi1>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @rewrite_rank0_tensor
+// CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<1.234500e+00> : tensor<f32>}> : () -> tensor<f32>
+func.func @rewrite_rank0_tensor() -> tensor<f32> {
+ %c = arith.constant dense<1.234500e+00> : tensor<f32>
+ return %c : tensor<f32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @preserve_scalar_i32
+// CHECK: %[[CST:.*]] = arith.constant 42 : i32
+func.func @preserve_scalar_i32() -> i32 {
+ %c = arith.constant 42 : i32
+ return %c : i32
+}
+
+// -----
+
+// CHECK-LABEL: func.func @preserve_index_tensor
+// CHECK: %[[CST:.*]] = arith.constant dense<[0, 1]> : tensor<2xindex>
+func.func @preserve_index_tensor() -> tensor<2xindex> {
+ %c = arith.constant dense<[0, 1]> : tensor<2xindex>
+ return %c : tensor<2xindex>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @rewrite_resource_tensor
+// CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense_resource<blob1> : tensor<4xf32>}> : () -> tensor<4xf32>
+func.func @rewrite_resource_tensor() -> tensor<4xf32> {
+ %c = arith.constant dense_resource<"blob1"> : tensor<4xf32>
+ return %c : tensor<4xf32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @rewrite_quant_tensor
+// CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[10, 20]> : tensor<2xui8>}> : () -> tensor<2xui8>
+func.func @rewrite_quant_tensor() -> tensor<2xui8> {
+ %c = arith.constant dense<[10, 20]> : tensor<2xui8>
+ return %c : tensor<2xui8>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @rewrite_quant_uniform_tensor
+// CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<["10", "20"]> : tensor<2x!quant.uniform<i8:f32, 5.000000e-01>>}> : () -> tensor<2x!quant.uniform<i8:f32, 5.000000e-01>>
+func.func @rewrite_quant_uniform_tensor() -> tensor<2x!quant.uniform<i8:f32, 0.5:0>> {
+ %c = arith.constant dense<["10", "20"]> : tensor<2x!quant.uniform<i8:f32, 0.5:0>>
+ return %c : tensor<2x!quant.uniform<i8:f32, 0.5:0>>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @rewrite_reshape_collapse_tensor
+// CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[1, 2, 3, 4]> : tensor<4xi32>}> : () -> tensor<4xi32>
+func.func @rewrite_reshape_collapse_tensor() -> tensor<4xi32> {
+ %c = arith.constant dense<[[1, 2], [3, 4]]> : tensor<2x2xi32>
+ %d = tensor.collapse_shape %c [[0, 1]] : tensor<2x2xi32> into tensor<4xi32>
+ return %d : tensor<4xi32>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @rewrite_fp8_tensor
+// CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[1.000000e+00, -5.000000e-01]> : tensor<2xf8E4M3FN>}> : () -> tensor<2xf8E4M3FN>
+func.func @rewrite_fp8_tensor() -> tensor<2xf8E4M3FN> {
+ %c = arith.constant dense<[1.0, -0.5]> : tensor<2xf8E4M3FN>
+ return %c : tensor<2xf8E4M3FN>
+}
+
+// -----
+
+// CHECK-LABEL: func.func @rewrite_mxint8_tensor
+// CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<["0x00", "0x7F"]> : tensor<2x!tosa.mxint8>}> : () -> tensor<2x!tosa.mxint8>
+func.func @rewrite_mxint8_tensor() -> tensor<2x!tosa.mxint8> {
+ %c = arith.constant dense<["0x00", "0x7F"]> : tensor<2x!tosa.mxint8>
+ return %c : tensor<2x!tosa.mxint8>
+}
|
lhutton1
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for the updates! Overall LGTM, just one question about possible redundant code
| func.func @rewrite_reshape_collapse_tensor() -> tensor<4xi32> { | ||
| %c = arith.constant dense<[[1, 2], [3, 4]]> : tensor<2x2xi32> | ||
| %d = tensor.collapse_shape %c [[0, 1]] : tensor<2x2xi32> into tensor<4xi32> | ||
| return %d : tensor<4xi32> |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Am I correct in thinking this test is intended to check the reshape functionality (https://github.com/llvm/llvm-project/pull/168370/files#diff-72a584dc8ce3d28e8e62114994d66991ad58d8fe1199c22fedfd16f4e77ae40eR97)?
If so, I'm not sure it works as intended. I believe the collapse_shape operation is constant folded before this pass is run, meaning the above line is never executed.
Add a standalone pass that rewrites tensor-valued
arith.constantops intotosa.const, normalize the TOSA backend contract.