-
Notifications
You must be signed in to change notification settings - Fork 15.3k
[mlir][tosa] Introduce arith.constant -> tosa.const normalization pass #168370
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
Lallapallooza
wants to merge
1
commit into
llvm:main
Choose a base branch
from
Lallapallooza:arith-const-tosa
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+246
−0
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
126 changes: 126 additions & 0 deletions
126
mlir/lib/Dialect/Tosa/Transforms/TosaArithConstantToConst.cpp
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,126 @@ | ||
| //===- TosaArithConstantToConst.cpp ---------------------------------------===// | ||
| // | ||
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| // See https://llvm.org/LICENSE.txt for license information. | ||
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| // | ||
| //===----------------------------------------------------------------------===// | ||
| // | ||
| // This file implements a pass that converts tensor-valued arith.constant ops | ||
| // into tosa.const so that TOSA pipelines operate on a uniform constant form. | ||
| // | ||
| //===----------------------------------------------------------------------===// | ||
|
|
||
| #include "mlir/Dialect/Tosa/Transforms/Passes.h" | ||
|
|
||
| #include "mlir/Dialect/Arith/IR/Arith.h" | ||
| #include "mlir/Dialect/Func/IR/FuncOps.h" | ||
| #include "mlir/Dialect/Quant/IR/QuantTypes.h" | ||
| #include "mlir/Dialect/Tosa/IR/TosaOps.h" | ||
| #include "mlir/IR/BuiltinAttributes.h" | ||
| #include "mlir/IR/BuiltinTypes.h" | ||
| #include "mlir/IR/PatternMatch.h" | ||
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" | ||
|
|
||
| namespace mlir { | ||
| namespace tosa { | ||
| #define GEN_PASS_DEF_TOSAARITHCONSTANTTOTOSACONSTPASS | ||
| #include "mlir/Dialect/Tosa/Transforms/Passes.h.inc" | ||
| } // namespace tosa | ||
| } // namespace mlir | ||
|
|
||
| using namespace mlir; | ||
| using namespace mlir::tosa; | ||
|
|
||
| namespace { | ||
|
|
||
| // NOTE: TOSA pipelines already lower their constants through shared Arith | ||
| // folding passes, so tensor literals often come back as `arith.constant` even | ||
| // after the IR is otherwise TOSA-only. Keep this normalization with the rest of | ||
| // the TOSA transforms so any client can re-establish a canonical `tosa.const` | ||
| // representation without needing a full Arith->TOSA conversion library. | ||
|
|
||
| /// Returns true when `elementType` is natively representable by tosa.const. | ||
| static bool isSupportedElementType(Type elementType) { | ||
| if (isa<FloatType>(elementType)) | ||
| return true; | ||
|
|
||
| if (auto intType = dyn_cast<IntegerType>(elementType)) | ||
| return intType.isSignless() || intType.isUnsigned(); | ||
|
|
||
| if (isa<quant::QuantizedType>(elementType)) | ||
| return true; | ||
|
|
||
| if (isa<tosa::mxint8Type>(elementType)) | ||
| return true; | ||
|
|
||
| return false; | ||
| } | ||
|
|
||
| class ArithConstantToTosaConst : public OpRewritePattern<arith::ConstantOp> { | ||
| public: | ||
| using OpRewritePattern::OpRewritePattern; | ||
|
|
||
| LogicalResult matchAndRewrite(arith::ConstantOp constOp, | ||
| PatternRewriter &rewriter) const override { | ||
| // TOSA constant verification requires a ranked, statically shaped tensor. | ||
| auto resultType = dyn_cast<RankedTensorType>(constOp.getResult().getType()); | ||
| if (!resultType || !resultType.hasStaticShape()) | ||
| return failure(); | ||
|
|
||
| if (!isSupportedElementType(resultType.getElementType())) | ||
| return failure(); | ||
|
|
||
| Attribute attr = constOp.getValueAttr(); | ||
| auto elementsAttr = dyn_cast<ElementsAttr>(attr); | ||
| if (!elementsAttr) | ||
| return failure(); | ||
|
|
||
| auto attrType = dyn_cast<RankedTensorType>(elementsAttr.getType()); | ||
| if (!attrType || !attrType.hasStaticShape()) | ||
| return failure(); | ||
|
|
||
| if (attrType != resultType) { | ||
| // Allow reshape when the payload can be reinterpreted without altering | ||
| // the number of elements or element type. Dense resource attributes | ||
| // cannot be reshaped losslessly, so bail out in that case. | ||
| if (!isa<DenseElementsAttr>(elementsAttr)) | ||
| return failure(); | ||
|
|
||
| if (attrType.getElementType() != resultType.getElementType()) | ||
| return failure(); | ||
|
|
||
| auto denseAttr = cast<DenseElementsAttr>(elementsAttr); | ||
| if (denseAttr.getNumElements() != resultType.getNumElements()) | ||
| return failure(); | ||
|
|
||
| elementsAttr = denseAttr.reshape(resultType); | ||
| } | ||
|
|
||
| auto newConst = tosa::ConstOp::create(rewriter, constOp.getLoc(), | ||
| resultType, elementsAttr); | ||
| rewriter.replaceOp(constOp, newConst.getResult()); | ||
| return success(); | ||
| } | ||
| }; | ||
|
|
||
| struct TosaArithConstantToTosaConstPass | ||
| : public tosa::impl::TosaArithConstantToTosaConstPassBase< | ||
| TosaArithConstantToTosaConstPass> { | ||
| using Base::Base; | ||
|
|
||
| void getDependentDialects(DialectRegistry ®istry) const override { | ||
| registry.insert<arith::ArithDialect, tosa::TosaDialect>(); | ||
| } | ||
|
|
||
| void runOnOperation() override { | ||
| auto *ctx = &getContext(); | ||
| RewritePatternSet patterns(ctx); | ||
| patterns.add<ArithConstantToTosaConst>(ctx); | ||
|
|
||
| if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) | ||
| signalPassFailure(); | ||
| } | ||
| }; | ||
|
|
||
| } // namespace |
110 changes: 110 additions & 0 deletions
110
mlir/test/Dialect/Tosa/tosa-arith-const-to-tosa-const.mlir
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,110 @@ | ||
| // RUN: mlir-opt %s --tosa-arith-const-to-tosa-const --split-input-file | FileCheck %s | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_f32_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[1.000000e+00, 2.000000e+00]> : tensor<2xf32>}> : () -> tensor<2xf32> | ||
| // CHECK: return %[[CST]] | ||
| func.func @rewrite_f32_tensor() -> tensor<2xf32> { | ||
| %c = arith.constant dense<[1.000000e+00, 2.000000e+00]> : tensor<2xf32> | ||
| return %c : tensor<2xf32> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_i32_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[1, 0, -1]> : tensor<3xi32>}> : () -> tensor<3xi32> | ||
| // CHECK: return %[[CST]] | ||
| func.func @rewrite_i32_tensor() -> tensor<3xi32> { | ||
| %c = arith.constant dense<[1, 0, -1]> : tensor<3xi32> | ||
| return %c : tensor<3xi32> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_i1_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[true, false]> : tensor<2xi1>}> : () -> tensor<2xi1> | ||
| func.func @rewrite_i1_tensor() -> tensor<2xi1> { | ||
| %c = arith.constant dense<[true, false]> : tensor<2xi1> | ||
| return %c : tensor<2xi1> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_rank0_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<1.234500e+00> : tensor<f32>}> : () -> tensor<f32> | ||
| func.func @rewrite_rank0_tensor() -> tensor<f32> { | ||
| %c = arith.constant dense<1.234500e+00> : tensor<f32> | ||
| return %c : tensor<f32> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @preserve_scalar_i32 | ||
| // CHECK: %[[CST:.*]] = arith.constant 42 : i32 | ||
| func.func @preserve_scalar_i32() -> i32 { | ||
| %c = arith.constant 42 : i32 | ||
| return %c : i32 | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @preserve_index_tensor | ||
| // CHECK: %[[CST:.*]] = arith.constant dense<[0, 1]> : tensor<2xindex> | ||
| func.func @preserve_index_tensor() -> tensor<2xindex> { | ||
| %c = arith.constant dense<[0, 1]> : tensor<2xindex> | ||
| return %c : tensor<2xindex> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_resource_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense_resource<blob1> : tensor<4xf32>}> : () -> tensor<4xf32> | ||
| func.func @rewrite_resource_tensor() -> tensor<4xf32> { | ||
| %c = arith.constant dense_resource<"blob1"> : tensor<4xf32> | ||
| return %c : tensor<4xf32> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_quant_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[10, 20]> : tensor<2xui8>}> : () -> tensor<2xui8> | ||
| func.func @rewrite_quant_tensor() -> tensor<2xui8> { | ||
| %c = arith.constant dense<[10, 20]> : tensor<2xui8> | ||
| return %c : tensor<2xui8> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_quant_uniform_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<["10", "20"]> : tensor<2x!quant.uniform<i8:f32, 5.000000e-01>>}> : () -> tensor<2x!quant.uniform<i8:f32, 5.000000e-01>> | ||
| func.func @rewrite_quant_uniform_tensor() -> tensor<2x!quant.uniform<i8:f32, 0.5:0>> { | ||
| %c = arith.constant dense<["10", "20"]> : tensor<2x!quant.uniform<i8:f32, 0.5:0>> | ||
| return %c : tensor<2x!quant.uniform<i8:f32, 0.5:0>> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_reshape_collapse_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[1, 2, 3, 4]> : tensor<4xi32>}> : () -> tensor<4xi32> | ||
| func.func @rewrite_reshape_collapse_tensor() -> tensor<4xi32> { | ||
| %c = arith.constant dense<[[1, 2], [3, 4]]> : tensor<2x2xi32> | ||
| %d = tensor.collapse_shape %c [[0, 1]] : tensor<2x2xi32> into tensor<4xi32> | ||
| return %d : tensor<4xi32> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_fp8_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<[1.000000e+00, -5.000000e-01]> : tensor<2xf8E4M3FN>}> : () -> tensor<2xf8E4M3FN> | ||
| func.func @rewrite_fp8_tensor() -> tensor<2xf8E4M3FN> { | ||
| %c = arith.constant dense<[1.0, -0.5]> : tensor<2xf8E4M3FN> | ||
| return %c : tensor<2xf8E4M3FN> | ||
| } | ||
|
|
||
| // ----- | ||
|
|
||
| // CHECK-LABEL: func.func @rewrite_mxint8_tensor | ||
| // CHECK: %[[CST:.*]] = "tosa.const"() <{values = dense<["0x00", "0x7F"]> : tensor<2x!tosa.mxint8>}> : () -> tensor<2x!tosa.mxint8> | ||
| func.func @rewrite_mxint8_tensor() -> tensor<2x!tosa.mxint8> { | ||
| %c = arith.constant dense<["0x00", "0x7F"]> : tensor<2x!tosa.mxint8> | ||
| return %c : tensor<2x!tosa.mxint8> | ||
| } | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Am I correct in thinking this test is intended to check the reshape functionality (https://github.com/llvm/llvm-project/pull/168370/files#diff-72a584dc8ce3d28e8e62114994d66991ad58d8fe1199c22fedfd16f4e77ae40eR97)?
If so, I'm not sure it works as intended. I believe the
collapse_shapeoperation is constant folded before this pass is run, meaning the above line is never executed.