Skip to content

longtermrisk/localrouter

Repository files navigation

LocalRouter

A unified multi-provider LLM client with consistent message formats and tool support across OpenAI, Anthropic, and Google GenAI.

Quick Start

Install the package:

pip install localrouter

Set your API keys as environment variables:

export OPENAI_API_KEY="your-openai-key"
export ANTHROPIC_API_KEY="your-anthropic-key" 
export GEMINI_API_KEY="your-gemini-key"  # or GOOGLE_API_KEY

Basic usage:

import asyncio
from localrouter import get_response, ChatMessage, MessageRole, TextBlock

async def main():
    messages = [
        ChatMessage(
            role=MessageRole.user, 
            content=[TextBlock(text="Hello, how are you?")]
        )
    ]
    
    response = await get_response(
        model="gpt-4.1",  # or "o3", "claude-sonnet-4-20250514", "gemini-2.5-pro", etc
        messages=messages
    )
    
    print(response.content[0].text)

asyncio.run(main())

Alternative Response Functions

LocalRouter provides several variants of get_response for different use cases:

Caching

To use disk caching, import get_response_cached as get_response:

# Import as get_response for consistent usage
from localrouter import get_response_cached as get_response

response = await get_response(
    model="gpt-4o-mini",
    messages=messages,
    cache_seed=12345  # Required for caching
)

This will return cached results whenever get_response is called with identical inputs and cache_seed is provided. If no cache_seed is provided, it will behave exactly like localrouter.get_response.

Retry with Backoff

Automatically retry failed requests with exponential backoff:

from localrouter import get_response_with_backoff as get_response

response = await get_response(
    model="gpt-4o-mini", 
    messages=messages
)

Caching + Backoff

Combine caching with retry logic:

from localrouter import get_response_cached_with_backoff as get_response

response = await get_response(
    model="gpt-4o-mini",
    messages=messages,
    cache_seed=12345  # Required for caching
)

Note: When using cached functions without cache_seed, they behave like non-cached versions (no caching occurs).

Images

from localrouter import ChatMessage, MessageRole, TextBlock, ImageBlock

# Text message
text_msg = ChatMessage(
    role=MessageRole.user,
    content=[TextBlock(text="Hello world")]
)
# Image message  
image_msg = ChatMessage(
    role=MessageRole.user,
    content=[
        ImageBlock.from_base64(base64_data, media_type="image/png"), # or: ImageBlock.from_file("image.png")
        TextBlock(text="What's in this image?")
    ]
)

Tool Calling

Define tools and get structured function calls:

from localrouter import ToolDefinition, get_response

# Define a tool
weather_tool = ToolDefinition(
    name="get_weather",
    description="Get current weather for a location",
    input_schema={
        "type": "object",
        "properties": {
            "location": {"type": "string", "description": "City name"}
        },
        "required": ["location"]
    }
)

# Use the tool
response = await get_response(
    model="gpt-4.1-nano",
    messages=[ChatMessage(
        role=MessageRole.user,
        content=[TextBlock(text="What's the weather in Paris?")]
    )],
    tools=[weather_tool]
)

# Check for tool calls
for block in response.content:
    if isinstance(block, ToolUseBlock):
        print(f"Tool: {block.name}, Args: {block.input}")

Structured Output

Get validated Pydantic models as responses:

from pydantic import BaseModel
from typing import List

class Event(BaseModel):
    name: str
    date: str
    participants: List[str]

response = await get_response(
    model="gpt-4.1-mini",
    messages=[ChatMessage(
        role=MessageRole.user,
        content=[TextBlock(text="Alice and Bob meet for lunch Friday")]
    )],
    response_format=Event
)

event = response.parsed  # Validated Event instance
print(f"Event: {event.name} on {event.date}")

Conversation Flow

Handle multi-turn conversations with tool results:

from localrouter import ToolResultBlock

# Initial request
messages = [ChatMessage(
    role=MessageRole.user,
    content=[TextBlock(text="Get weather for Tokyo")]
)]

# Get response with tool call
response = await get_response(model="gpt-4o-mini", messages=messages, tools=[weather_tool])
messages.append(response)

# Execute tool and add result
tool_call = response.content[0]  # ToolUseBlock
tool_result = ToolResultBlock(
    tool_use_id=tool_call.id,
    content=[TextBlock(text="Tokyo: 22°C, sunny")] # Tool result may also contain ImageBlock parts
)
messages.append(ChatMessage(role=MessageRole.user, content=[tool_result]))

# Continue conversation
final_response = await get_response(model="gpt-4o-mini", messages=messages, tools=[weather_tool])

Tool Definition

  • ToolDefinition(name, description, input_schema) - Define available tools
  • SubagentToolDefinition() - Predefined tool for sub-agents

Reasoning/Thinking Support

Configure reasoning budgets for models that support explicit thinking (GPT-5, Claude Sonnet 4+, Gemini 2.5):

from localrouter import ReasoningConfig

# Using effort levels (OpenAI-style)
response = await get_response(
    model="gpt-5",  # When available
    messages=messages,
    reasoning=ReasoningConfig(effort="high")  # "minimal", "low", "medium", "high"
)

# Using explicit token budget (Anthropic/Gemini-style)
response = await get_response(
    model="gemini-2.5-pro",
    messages=messages,
    reasoning=ReasoningConfig(budget_tokens=8000)
)

# Let model decide (Gemini dynamic thinking)
response = await get_response(
    model="gemini-2.5-flash",
    messages=messages,
    reasoning=ReasoningConfig(dynamic=True)
)

# Backward compatible dict config
response = await get_response(
    model="claude-sonnet-4-20250514",  # When available
    messages=messages,
    reasoning={"effort": "medium"}
)

The reasoning configuration automatically converts between provider formats:

  • OpenAI (GPT-5): Uses effort levels
  • Anthropic (Claude 4+): Uses budget_tokens
  • Google (Gemini 2.5): Uses thinking_budget with dynamic option

Models that don't support reasoning will ignore the configuration.

Custom Providers and Model Routing

LocalRouter supports regex patterns for model matching and prioritized provider selection. OpenRouter serves as a fallback for any model containing "/" (e.g., "meta-llama/llama-3.3-70b") with lowest priority.

from localrouter import add_provider, re

# Add a custom provider with regex pattern support
async def custom_get_response(model, messages, **kwargs):
    # Your custom implementation
    pass

add_provider(
    custom_get_response,
    models=["custom-model-1", re.compile(r"custom-.*")],  # Exact match or regex
    priority=50  # Lower = higher priority (default: 100, OpenRouter: 1000)
)

Request-Level Routing

LocalRouter allows you to register router functions that can dynamically modify model selection based on request parameters. This is useful for:

  • Creating model aliases
  • Routing requests with images to vision models
  • Selecting models based on temperature, tools, or other parameters
  • Implementing fallback strategies
from localrouter import register_router

# Example 1: Simple alias
def alias_router(req):
    if req['model'] == 'default':
        return 'gpt-5'
    return None  # Keep original model

register_router(alias_router)

# Now you can use the alias
response = await get_response(
    model="default",  # Will be routed to gpt-5
    messages=messages
)
# Example 2: Route based on message content
def vision_router(req):
    """Route requests with images to vision-capable models"""
    messages = req.get('messages', [])
    for msg in messages:
        for block in msg.content:
            if hasattr(block, '__class__') and 'ImageBlock' in block.__class__.__name__:
                return 'qwen/qwen3-vl-30b-a3b-instruct'
    return None  # Use original model for text-only requests

register_router(vision_router)
# Example 3: Route based on parameters
def temperature_router(req):
    """Use different models based on temperature"""
    temperature = req.get('temperature', 0)
    if temperature > 0.8:
        return 'gpt-5'  # Creative tasks
    return 'gpt-4.1-mini'  # Deterministic tasks

register_router(temperature_router)

Router Function Interface:

  • Input: Dictionary with keys: model, messages, tools, response_format, reasoning, and any other kwargs
  • Output: String (new model name) or None (keep original model)
  • Execution: Routers are applied in registration order, and each router sees the model name from the previous router

About

Unified python api for anthropic, openai, genai sdks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages