Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 18 additions & 22 deletions python/activator/middleware_interface.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@
import lsst.afw.cameraGeom
import lsst.ctrl.mpexec
from lsst.ctrl.mpexec import SeparablePipelineExecutor, SingleQuantumExecutor, MPGraphExecutor
from lsst.daf.butler import Butler, CollectionType
from lsst.daf.butler import Butler, CollectionType, Timespan
import lsst.dax.apdb
import lsst.geom
from lsst.meas.algorithms.htmIndexer import HtmIndexer
Expand Down Expand Up @@ -1188,28 +1188,24 @@ def _filter_calibs_by_date(butler: Butler,
Returns
-------
filtered_calibs : iterable [`lsst.daf.butler.DatasetRef`]
The subset of ``unfiltered_calibs`` that is valid on ``date``.
The datasets in ``unfiltered_calibs`` that are valid on ``date``. Not
guaranteed to be the same `~lsst.daf.butler.DatasetRef` objects passesd
to ``unfiltered_calibs``, but guaranteed to be fully expanded.
"""
dataset_types = {ref.datasetType for ref in unfiltered_calibs}
associations = {}
for dataset_type in dataset_types:
associations.update(
(a.ref, a) for a in butler.registry.queryDatasetAssociations(
dataset_type, collections, collectionTypes={CollectionType.CALIBRATION}, flattenChains=True
)
)

t = astropy.time.Time(date, scale='utc')
# Unfiltered_calibs can have up to one copy of each calib per certify cycle.
# Minimize redundant queries to find_dataset.
unique_ids = {(ref.datasetType, ref.dataId) for ref in unfiltered_calibs}
t = Timespan.fromInstant(astropy.time.Time(date, scale='utc'))
_log_trace.debug("Looking up calibs for %s in %s.", t, collections)
# DatasetAssociation.timespan guaranteed not None
filtered_calibs = []
for ref in unfiltered_calibs:
if ref in associations:
if associations[ref].timespan.contains(t):
filtered_calibs.append(ref)
_log_trace.debug("%s (valid over %s) matches %s.", ref, associations[ref].timespan, t)
else:
_log_trace.debug("%s (valid over %s) does not match %s.", ref, associations[ref].timespan, t)
else:
_log_trace.debug("No calib associations for %s.", ref)
for dataset_type, data_id in unique_ids:
# Use find_dataset to simultaneously filter by validity and chain order
found_ref = butler.find_dataset(dataset_type,
data_id,
collections=collections,
timespan=t,
dimension_records=True,
)
if found_ref:
filtered_calibs.append(found_ref)
return filtered_calibs