Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -393,8 +393,6 @@ Distance is computed as 1 - similarity.
### SIFT4
SIFT4 is a general purpose string distance algorithm inspired by JaroWinkler and Longest Common Subsequence. It was developed to produce a distance measure that matches as close as possible to the human perception of string distance. Hence it takes into account elements like character substitution, character distance, longest common subsequence etc. It was developed using experimental testing, and without theoretical background.

**Not implemented yet**



## Users
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

setuptools.setup(
name="strsimpy",
version="0.1.8",
version="0.1.9",
description="A library implementing different string similarity and distance measures",
long_description=long_description,
long_description_content_type="text/markdown",
Expand Down
3 changes: 2 additions & 1 deletion strsimpy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@
from .string_distance import StringDistance
from .string_similarity import StringSimilarity
from .weighted_levenshtein import WeightedLevenshtein
from .sift4 import SIFT4

__name__ = 'strsimpy'
__version__ = '0.1.8'
__version__ = '0.1.9'
188 changes: 188 additions & 0 deletions strsimpy/sift4.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,188 @@
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from .string_distance import MetricStringDistance


class SIFT4Options(MetricStringDistance):
def __init__(self, options=None):
self.options = {
'maxdistance': 0,
'tokenizer': lambda x: [i for i in x],
'tokenmatcher': lambda t1, t2: t1 == t2,
'matchingevaluator': lambda t1, t2: 1,
'locallengthevaluator': lambda x: x,
'transpositioncostevaluator': lambda c1, c2: 1,
'transpositionsevaluator': lambda lcss, trans: lcss - trans
}
otheroptions = {
'tokenizer': {
'ngram': self.ngramtokenizer,
'wordsplit': self.wordsplittokenizer,
'characterfrequency': self.characterfrequencytokenizer
},
'tokematcher': {'sift4tokenmatcher': self.sift4tokenmatcher},
'matchingevaluator': {'sift4matchingevaluator': self.sift4matchingevaluator},
'locallengthevaluator': {
'rewardlengthevaluator': self.rewardlengthevaluator,
'rewardlengthevaluator2': self.rewardlengthevaluator2
},
'transpositioncostevaluator': {'longertranspositionsaremorecostly':self.longertranspositionsaremorecostly},
'transpositionsevaluator': {}
}
if isinstance(options, dict):
for k, v in options.items():
if k in self.options.keys():
if k == 'maxdistance':
if isinstance(v, int):
self.options[k] = v
else:
raise ValueError("Option maxdistance should be int")
else:
if callable(v):
self.options[k] = v
else:
if v in otheroptions[k].keys():
self.options[k] = otheroptions[k][v]
else:
msg = "Option {} should be callable or one of [{}]".format(k, ', '.join(otheroptions[k].keys()))
raise ValueError(msg)
else:
raise ValueError("Option {} not recognized.".format(k))
elif options is not None:
raise ValueError("options should be a dictionary")
self.maxdistance = self.options['maxdistance']
self.tokenizer = self.options['tokenizer']
self.tokenmatcher = self.options['tokenmatcher']
self.matchingevaluator = self.options['matchingevaluator']
self.locallengthevaluator = self.options['locallengthevaluator']
self.transpositioncostevaluator = self.options['transpositioncostevaluator']
self.transpositionsevaluator = self.options['transpositionsevaluator']

# tokenizers:
@staticmethod
def ngramtokenizer(s, n):
result = []
if not s:
return result
for i in range(len(s) - n - 1):
result.append(s[i:(i + n)])
return result

@staticmethod
def wordsplittokenizer(s):
if not s:
return []
return s.split()

@staticmethod
def characterfrequencytokenizer(s):
letters = [i for i in 'abcdefghijklmnopqrstuvwxyz']
return [s.lower().count(x) for x in letters]

# tokenMatchers:
@staticmethod
def sift4tokenmatcher(t1, t2):
similarity = 1 - SIFT4().distance(t1, t2, 5) / max(len(t1), len(t2))
return similarity > 0.7

# matchingEvaluators:
@staticmethod
def sift4matchingevaluator(t1, t2):
similarity = 1 - SIFT4().distance(t1, t2, 5) / max(len(t1), len(t2))
return similarity

# localLengthEvaluators:
@staticmethod
def rewardlengthevaluator(l):
if l < 1:
return l
return l - 1 / (l + 1)

@staticmethod
def rewardlengthevaluator2(l):
return pow(l, 1.5)

# transpositionCostEvaluators:
@staticmethod
def longertranspositionsaremorecostly(c1, c2):
return abs(c2 - c1) / 9 + 1


class SIFT4:
# As described in https://siderite.dev/blog/super-fast-and-accurate-string-distance.html/
def distance(self, s1, s2, maxoffset=5, options=None):
options = SIFT4Options(options)
t1, t2 = options.tokenizer(s1), options.tokenizer(s2)
l1, l2 = len(t1), len(t2)
if l1 == 0:
return l2
if l2 == 0:
return l1

c1, c2, lcss, local_cs, trans, offset_arr = 0, 0, 0, 0, 0, []
while (c1 < l1) and (c2 < l2):
if options.tokenmatcher(t1[c1], t2[c2]):
local_cs += options.matchingevaluator(t1[c1], t2[c2])
isTrans = False
i = 0
while i < len(offset_arr):
ofs = offset_arr[i]
if (c1 <= ofs['c1']) or (c2 <= ofs['c2']):
isTrans = abs(c2 - c1) >= abs(ofs['c2'] - ofs['c1'])
if isTrans:
trans += options.transpositioncostevaluator(c1, c2)
else:
if not ofs['trans']:
ofs['trans'] = True
trans += options.transpositioncostevaluator(ofs['c1'], ofs['c2'])
break
else:
if (c1 > ofs['c2']) and (c2 > ofs['c1']):
offset_arr.pop(i)
else:
i += 1
offset_arr.append({'c1': c1, 'c2': c2, 'trans': isTrans})
else:
lcss += options.locallengthevaluator(local_cs)
local_cs = 0
if c1 != c2:
c1 = c2 = min(c1, c2)
for i in range(maxoffset):
if (c1 + i < l1) or (c2 + i < l2):
if (c1 + i < l1) and options.tokenmatcher(t1[c1 + i], t2[c2]):
c1 += i - 1
c2 -= 1
break
if (c2 + i < l2) and options.tokenmatcher(t1[c1], t2[c2 + i]):
c1 -= 1
c2 += i - 1
break
c1 += 1
c2 += 1
if options.maxdistance:
temporarydistance = options.locallengthevaluator(max(c1, c2)) - options.transpositionsevaluator(lcss, trans)
if temporarydistance >= options.maxdistance:
return round(temporarydistance)
if (c1 >= l1) or (c2 >= l2):
lcss += options.locallengthevaluator(local_cs)
local_cs = 0
c1 = c2 = min(c1, c2)
lcss += options.locallengthevaluator(local_cs)
return round(options.locallengthevaluator(max(l1, l2)) - options.transpositionsevaluator(lcss, trans))