Implements the patterns from Anthropic's "Code Execution with MCP" article for efficient AI agent operations.
Instead of loading thousands of tool definitions upfront and passing intermediate results through model context, agents write code that:
- Discovers tools on-demand (progressive disclosure)
- Processes data in a sandbox (not in context)
- Returns only summarized/filtered results
Result: Up to 98.7% token reduction compared to direct tool invocation.
- Resource limits (30s timeout, 500MB memory)
- Restricted builtins (safe subset)
- Safe modules (json, re, math, datetime, etc.)
- Workspace file utilities
- Search tools by query without loading definitions
- Get summaries first, full definitions on-demand
- Organized by category (security, memory, cluster, etc.)
- Auto-detect sensitive data (emails, phones, SSNs, etc.)
- Replace with tokens before data reaches model
- Restore when needed for tool calls
- Save reusable code snippets
- Build compound capabilities over time
- Share across sessions
| Tool | Description |
|---|---|
execute_code |
Run Python in secure sandbox |
search_tools |
Progressive tool discovery |
get_tool_definition |
Load full tool details |
save_skill |
Persist reusable code |
load_skill |
Load saved skill |
list_skills |
List all skills |
sanitize_pii |
Tokenize PII in text |
restore_pii |
Restore tokenized PII |
write_workspace_file |
Persist data to workspace |
read_workspace_file |
Read from workspace |
list_workspace_files |
List workspace contents |
get_execution_stats |
Environment statistics |
# Instead of returning 10,000 rows to context:
code = '''
data = json.loads(read_file("large_dataset.json"))
filtered = [d for d in data if d['status'] == 'active']
result = {
'total': len(data),
'active': len(filtered),
'sample': filtered[:5]
}
'''
execute_code(code)
# Returns only summary, not full dataset# Find security tools (minimal tokens)
search_tools("vulnerability", category="security", detail_level="summary")
# Load full definition only when needed
get_tool_definition("web_vuln_scanner", category="security")# Sanitize before processing
sanitize_pii("Contact john@example.com at 555-123-4567")
# Returns: "Contact [EMAIL_abc123] at [PHONE_def456]"
# Restore when needed
restore_pii("[EMAIL_abc123]")
# Returns: "john@example.com"# Save a reusable skill
save_skill(
name="filter_high_risk",
code="def filter_high_risk(vulns): return [v for v in vulns if v['severity'] in ['high', 'critical']]",
description="Filter vulnerabilities to high/critical only"
)
# Use in future code execution
code = '''
skill = load_skill("filter_high_risk")
exec(skill)
vulns = json.loads(read_file("scan_results.json"))
result = filter_high_risk(vulns)
'''cd /mnt/agentic-system/mcp-servers/code-execution-mcp
pip install -e .Add to ~/.claude.json:
{
"mcpServers": {
"code-execution": {
"command": "/mnt/agentic-system/.venv/bin/python3",
"args": ["/mnt/agentic-system/mcp-servers/code-execution-mcp/src/code_execution_mcp/server.py"],
"disabled": false
}
}
}code-execution-mcp/
├── workspace/ # Sandboxed file storage
├── skills/ # Persistent skill definitions
├── tools_registry/ # Tool definitions for discovery
│ ├── security/ # Security tools
│ └── memory/ # Memory tools
└── src/
└── code_execution_mcp/
└── server.py # Main MCP server
- Code runs with restricted builtins (no
open,exec,evalon arbitrary input) - File access limited to workspace directory
- Resource limits prevent runaway execution
- No network access from sandbox