Skip to content

Conversation

@dependabot
Copy link

@dependabot dependabot bot commented on behalf of github Jun 8, 2021

Bumps nevergrad from 0.4.2.post5 to 0.4.3.post4.

Release notes

Sourced from nevergrad's releases.

0.4.3

This version provides a few fixes and the new multi-objective API of optimizers (you can now provide a list/array of float to tell directly). This allows fore more efficient multi-objective optimization for some optimizers (DE, NGOpt). Future work will continue to improve multi-objective capacities and aim at improving constraints management.

See CHANGELOG for details.

Changelog

Sourced from nevergrad's changelog.

Changelog

master

Breaking changes

  • copy() method of a Parameter does not change the parameters's random state anymore (it used to reset it to None #1048
  • MultiobjectiveFunction does not exist anymore #1034.
  • Choice and TransitionChoice have some of their API changed for uniformization. In particular, indices is now an ng.p.Array (and not an np.ndarray) which contains the selected indices (or index) of the Choice. The sampling is performed by specific "layers" that are applied to Data parameters #1065.
  • Parameter.set_standardized_space does not take a deterministic parameter anymore #1068. This is replaced by the more general with ng.p.helpers.determistic_sampling(parameter) context. One-shot algorithms are also updated to choose options of Choice parameters deterministically, since it is a simpler behavior to expect compared to sampling the standardized space than sampling the option stochastically from there
  • RandomSearch now defaults to sample values using the parameter.sample() instead of a Gaussian #1068. The only difference comes with bounded variables since in this case parameter.sample() samples uniformly (unless otherwise specified). The previous behavior can be obtained with RandomSearchMaker(sampler="gaussian").
  • PSO API has been slightly changed #1073
  • Parameter instances descriptor attribute is deprecated, in favor of a combinaison of an analysis function (ng.p.helpers.analyze) returning information about the parameter (eg: whether continuous, deterministic etc...) and a new function attribute which can be used to provide information about the function (eg: whether deterministic etc) #1076.
  • Half the budget alloted to solve cheap constrained is now used by a sub-optimizer #1047. More changes of constraint management will land in the near future.
  • Experimental methods Array.set_recombination and Array.set_mutation(custom=.) are removed in favor of layers changing Array behaviors #1086. Caution: this is still very experimental (and undocumented).

Important changes

  • Parameter classes are undergoing heavy changes, please open an issue if you encounter any problem. The midterm aim is to allow for simpler constraint management.
  • Parameter have been updated have undergone heavy changes to ease the handling of their tree structure ( #1029 #1036 #1038 #1043 #1044 )
  • Parameter classes have now a layer structure #1045 which simplifies changing their behavior. In future PRs this system will take charge of bounds, other constraints, sampling etc.
  • The layer structures allows disentangling bounds and log-distribution. This goal has been reached with #1053 but may create some instabilities. In particular, the representation (__repr__) of Array has changed, and their bounds attribute is no longer reliable for now. This change will eventually lead to a new syntax for settings bounds and distribution, but it's not ready yet.

... (truncated)

Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Bumps [nevergrad](https://github.com/facebookresearch/nevergrad) from 0.4.2.post5 to 0.4.3.post4.
- [Release notes](https://github.com/facebookresearch/nevergrad/releases)
- [Changelog](https://github.com/facebookresearch/nevergrad/blob/master/CHANGELOG.md)
- [Commits](facebookresearch/nevergrad@0.4.2.post5...0.4.3.post4)

---
updated-dependencies:
- dependency-name: nevergrad
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
@dependabot dependabot bot added the dependencies Pull requests that update a dependency file label Jun 8, 2021
@dependabot @github
Copy link
Author

dependabot bot commented on behalf of github Aug 14, 2021

Superseded by #20.

@dependabot dependabot bot closed this Aug 14, 2021
@dependabot dependabot bot deleted the dependabot/pip/python/requirements/tune/nevergrad-0.4.3.post4 branch August 14, 2021 07:09
matthewdeng pushed a commit that referenced this pull request Jul 28, 2022
We encountered SIGSEGV when running Python test `python/ray/tests/test_failure_2.py::test_list_named_actors_timeout`. The stack is:

```
#0  0x00007fffed30f393 in std::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string(std::string const&) ()
   from /lib64/libstdc++.so.6
#1  0x00007fffee707649 in ray::RayLog::GetLoggerName() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so
#2  0x00007fffee70aa90 in ray::SpdLogMessage::Flush() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so
#3  0x00007fffee70af28 in ray::RayLog::~RayLog() () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so
#4  0x00007fffee2b570d in ray::asio::testing::(anonymous namespace)::DelayManager::Init() [clone .constprop.0] ()
   from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so
#5  0x00007fffedd0d95a in _GLOBAL__sub_I_asio_chaos.cc () from /home/admin/dev/Arc/merge/ray/python/ray/_raylet.so
#6  0x00007ffff7fe282a in call_init.part () from /lib64/ld-linux-x86-64.so.2
#7  0x00007ffff7fe2931 in _dl_init () from /lib64/ld-linux-x86-64.so.2
#8  0x00007ffff7fe674c in dl_open_worker () from /lib64/ld-linux-x86-64.so.2
#9  0x00007ffff7b82e79 in _dl_catch_exception () from /lib64/libc.so.6
#10 0x00007ffff7fe5ffe in _dl_open () from /lib64/ld-linux-x86-64.so.2
#11 0x00007ffff7d5f39c in dlopen_doit () from /lib64/libdl.so.2
#12 0x00007ffff7b82e79 in _dl_catch_exception () from /lib64/libc.so.6
#13 0x00007ffff7b82f13 in _dl_catch_error () from /lib64/libc.so.6
#14 0x00007ffff7d5fb09 in _dlerror_run () from /lib64/libdl.so.2
#15 0x00007ffff7d5f42a in dlopen@@GLIBC_2.2.5 () from /lib64/libdl.so.2
#16 0x00007fffef04d330 in py_dl_open (self=<optimized out>, args=<optimized out>)
    at /tmp/python-build.20220507135524.257789/Python-3.7.11/Modules/_ctypes/callproc.c:1369
```

The root cause is that when loading `_raylet.so`, `static DelayManager _delay_manager` is initialized and `RAY_LOG(ERROR) << "RAY_testing_asio_delay_us is set to " << delay_env;` is executed. However, the static variables declared in `logging.cc` are not initialized yet (in this case, `std::string RayLog::logger_name_ = "ray_log_sink"`).

It's better not to rely on the initialization order of static variables in different compilation units because it's not guaranteed. I propose to change all `RAY_LOG`s to `std::cerr` in `DelayManager::Init()`.

The crash happens in Ant's internal codebase. Not sure why this test case passes in the community version though.

BTW, I've tried different approaches:

1. Using a static local variable in `get_delay_us` and remove the global variable. This doesn't work because `init()` needs to access the variable as well.
2. Defining the global variable as type `std::unique_ptr<DelayManager>` and initialize it in `get_delay_us`. This works but it requires a lock to be thread-safe.
matthewdeng pushed a commit that referenced this pull request Aug 21, 2025
… condition (ray-project#55367)

## Why are these changes needed?

Workers crash with a fatal `RAY_CHECK` failure when the plasma store
connection is broken during shutdown, causing the following error:
```
RAY_CHECK failed: PutInLocalPlasmaStore(object, object_id, true) Status not OK: IOError: Broken pipe
```
Stacktrace:
```
core_worker.cc:720 C  Check failed: PutInLocalPlasmaStore(object, object_id, true) Status not OK: IOError: Broken pipe 
*** StackTrace Information ***
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x141789a) [0x7924dd2c689a] ray::operator<<()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray6RayLogD1Ev+0x479) [0x7924dd2c9319] ray::RayLog::~RayLog()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x95cc8a) [0x7924dc80bc8a] ray::core::CoreWorker::CoreWorker()::{lambda()#13}::operator()()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core11TaskManager27MarkTaskReturnObjectsFailedERKNS_17TaskSpecificationENS_3rpc9ErrorTypeEPKNS5_12RayErrorInfoERKN4absl12lts_2023080213flat_hash_setINS_8ObjectIDENSB_13hash_internal4HashISD_EESt8equal_toISD_ESaISD_EEE+0x679) [0x7924dc868f29] ray::core::TaskManager::MarkTaskReturnObjectsFailed()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core11TaskManager15FailPendingTaskERKNS_6TaskIDENS_3rpc9ErrorTypeEPKNS_6StatusEPKNS5_12RayErrorInfoE+0x416) [0x7924dc86f186] ray::core::TaskManager::FailPendingTask()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x9a90e6) [0x7924dc8580e6] ray::core::NormalTaskSubmitter::RequestNewWorkerIfNeeded()::{lambda()#1}::operator()()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray3rpc14ClientCallImplINS0_23RequestWorkerLeaseReplyEE15OnReplyReceivedEv+0x68) [0x7924dc94aa48] ray::rpc::ClientCallImpl<>::OnReplyReceived()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZNSt17_Function_handlerIFvvEZN3ray3rpc17ClientCallManager29PollEventsFromCompletionQueueEiEUlvE_E9_M_invokeERKSt9_Any_data+0x15) [0x7924dc79e285] std::_Function_handler<>::_M_invoke()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd9b4c8) [0x7924dcc4a4c8] EventTracker::RecordExecution()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd4648e) [0x7924dcbf548e] std::_Function_handler<>::_M_invoke()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xd46906) [0x7924dcbf5906] boost::asio::detail::completion_handler<>::do_complete()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f417b) [0x7924dd2a317b] boost::asio::detail::scheduler::do_run_one()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f5af9) [0x7924dd2a4af9] boost::asio::detail::scheduler::run()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0x13f6202) [0x7924dd2a5202] boost::asio::io_context::run()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(_ZN3ray4core10CoreWorker12RunIOServiceEv+0x91) [0x7924dc793a61] ray::core::CoreWorker::RunIOService()
/home/ray/anaconda3/lib/python3.11/site-packages/ray/_raylet.so(+0xcba0b0) [0x7924dcb690b0] thread_proxy
/lib/x86_64-linux-gnu/libc.so.6(+0x94ac3) [0x7924dde71ac3]
/lib/x86_64-linux-gnu/libc.so.6(+0x126850) [0x7924ddf03850]
```

Stack trace flow:
1. Task lease request fails ->
`NormalTaskSubmitter::RequestNewWorkerIfNeeded()` callback.
2. Triggers `TaskManager::FailPendingTask()` ->
`MarkTaskReturnObjectsFailed()`.
3. System attempts to store error objects in plasma via
`put_in_local_plasma_callback_`.
4. Plasma connection is broken (raylet/plasma store already shut down).
5. `RAY_CHECK_OK()` in the callback causes fatal crash instead of
graceful handling.

Root Cause:

This is a shutdown ordering race condition:
1. Raylet shuts down first: The raylet stops its IO context
([main_service_.stop()](https://github.com/ray-project/ray/blob/77c5475195e56a26891d88460973198391d20edf/src/ray/object_manager/plasma/store_runner.cc#L146))
which closes plasma store connections.
2. Worker still processes callbacks: Core worker continues processing
pending callbacks on separate threads.
3. Broken connection: When the callback tries to store error objects in
plasma, the connection is already closed.
4. Fatal crash: The `RAY_CHECK_OK()` treats this as an unexpected error
and crashes the process.

Fix:

1. Shutdown-aware plasma operations
- Add `CoreWorker::IsShuttingDown()` method to check shutdown state.
- Skip plasma operations entirely when shutdown is in progress.
- Prevents attempting operations on already-closed connections.

2. Targeted error handling for connection failures
- Replace blanket `RAY_CHECK_OK()` with specific error type checking.
- Handle connection errors (Broken pipe, Connection reset, Bad file
descriptor) as warnings during shutdown scenarios.
- Maintain `RAY_CHECK_OK()` for other error types to catch real issues.

---------

Signed-off-by: Sagar Sumit <sagarsumit09@gmail.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

dependencies Pull requests that update a dependency file

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant