Skip to content

A persistent memory MCP server for Claude Code - Recursive Language Model integration for Claude Code inspired by MIT CSAIL paper

License

Notifications You must be signed in to change notification settings

maydali28/memcp

Repository files navigation

 ██████   ██████ ██████████ ██████   ██████   █████████  ███████████
░░██████ ██████ ░░███░░░░░█░░██████ ██████   ███░░░░░███░░███░░░░░███
 ░███░█████░███  ░███  █ ░  ░███░█████░███  ███     ░░░  ░███    ░███
 ░███░░███ ░███  ░██████    ░███░░███ ░███ ░███          ░██████████
 ░███ ░░░  ░███  ░███░░█    ░███ ░░░  ░███ ░███          ░███░░░░░░
 ░███      ░███  ░███ ░   █ ░███      ░███ ░░███     ███ ░███
 █████     █████ ██████████ █████     █████ ░░█████████  █████
░░░░░     ░░░░░ ░░░░░░░░░░ ░░░░░     ░░░░░   ░░░░░░░░░  ░░░░░

Persistent Memory MCP Server for Claude Code
Never lose context again.

Python 3.10+ MIT License CI PyPI


Why MemCP?

Claude Code loses everything after /compact. Previous decisions, insights, technical findings, and conversation context vanish. Long sessions hit the context window limit and critical information gets pushed out. Every new session starts from scratch.

MemCP solves this. It gives Claude a persistent external memory — a place to store, organize, and retrieve knowledge across sessions without consuming context window tokens.

Problem How MemCP Solves It
Context lost after /compact Auto-save hooks force Claude to persist insights before compact
Session boundaries erase knowledge Insights persist in SQLite across all sessions
Large documents fill context window Content stays on disk as named variables; Claude loads only what it needs
No way to connect related knowledge MAGMA 4-graph links insights via semantic, temporal, causal, and entity edges
Search is limited to current session Tiered search (keyword → BM25 → semantic → hybrid) across all stored content

MemCP implements the RLM framework (Recursive Language Model, arXiv:2512.24601) — an active exploration model where content stays on disk and Claude decides what to load, rather than passive RAG retrieval.


Architecture

graph TB
    CC[Claude Code] -->|MCP Protocol| S[MemCP Server<br/>FastMCP]
    S --> M[Memory<br/>21 tools]
    S --> G[MAGMA Graph<br/>SQLite]
    S --> SR[Search<br/>5 tiers]
    S --> C[Context Store<br/>Filesystem]

    G -->|4 edge types| E1[Semantic]
    G --> E2[Temporal]
    G --> E3[Causal]
    G --> E4[Entity]

    SA[Sub-Agents] -->|MCP| S
    SA --> A1[Analyzer]
    SA --> A2[Mapper x N]
    SA --> A3[Synthesizer]

    H[Hooks] -->|PreCompact| CC
    H -->|Reminders| CC
Loading

3-layer delegation: server.py (MCP endpoints) → tools/*.py (orchestration) → core/*.py (business logic)

Storage: SQLite for the knowledge graph (graph.db) + filesystem for contexts and chunks (~/.memcp/)

Dependencies: Only 2 core packages (mcp, pydantic). Everything else is optional and unlocks progressively better capabilities.


Features

Memory & Knowledge Graph

  • 21 MCP tools — remember, recall, forget, search, chunk, filter, traverse, and more
  • MAGMA 4-graph — insights connect via semantic, temporal, causal, and entity edges in SQLite
  • Intent-aware recall — "why did we choose X?" follows causal edges; "when was Y decided?" follows temporal edges
  • Auto entity extraction — regex-based (files, modules, URLs, CamelCase) + LLM-based via sub-agents

Context Management

  • Context-as-variable — large content stored on disk, Claude sees only metadata (type, size, token count)
  • 6 chunking strategies — auto, lines, paragraphs, headings, chars, regex
  • RLM navigation — peek, grep, filter without loading entire documents

Search

  • 5-tier search — keyword (stdlib) → BM25 (bm25s) → fuzzy (rapidfuzz) → semantic (model2vec/fastembed) → hybrid fusion
  • Graceful degradation — always works with zero optional deps; each extra unlocks better search
  • Token budgetingmax_tokens parameter caps how much enters the context window

Sub-Agents (RLM Map-Reduce)

  • 4 Claude Code sub-agents — analyzer, mapper, synthesizer, entity-extractor
  • Parallel chunk processing — mappers run on Haiku in background, synthesizer combines on Sonnet
  • Independent context windows — sub-agents don't consume your main context

Lifecycle & Organization

  • Auto-save hooks — PreCompact blocks until context is saved; progressive reminders at 10/20/30 turns
  • 3-zone retention — Active → Archive (compressed) → Purge (logged deletion)
  • Multi-project — auto-detects project from git root, namespaces all data
  • Multi-session — tracks sessions with timestamps and insight counts

Developer Experience

  • 341 tests across 16 test files, CI on Python 3.10/3.11/3.12
  • 77 benchmarks — token efficiency, context rot, window management, scale behavior
  • Interactive installer — step-by-step setup with bash scripts/install.sh
  • Docker support — single-command containerized deployment
  • Zero-config — works out of the box with sensible defaults

Available MCP Tools

MemCP exposes 21 MCP tools organized into 6 categories. For full documentation with parameters, examples, and tips, see docs/TOOLS.md.

Core Memory (5 tools)

Tool Description
memcp_ping Health check — returns server status and memory statistics
memcp_remember Save an insight to persistent memory (decisions, facts, preferences, findings)
memcp_recall Retrieve insights from memory with query, category, importance, and token budget filters
memcp_forget Remove an insight from memory by ID
memcp_status Current memory statistics — insight count, categories, importance distribution

Context Management (8 tools)

Tool Description
memcp_load_context Store content as a named context variable on disk (from text or file path)
memcp_inspect_context Inspect a stored context — metadata and preview without loading full content
memcp_get_context Read a stored context's content or a specific line range
memcp_chunk_context Split a stored context into navigable numbered chunks (6 strategies: auto, lines, paragraphs, headings, chars, regex)
memcp_peek_chunk Read a specific chunk from a chunked context
memcp_filter_context Filter context content by regex pattern — returns only matching (or non-matching) lines
memcp_list_contexts List all stored context variables
memcp_clear_context Delete a stored context and its chunks

Search (1 tool)

Tool Description
memcp_search Search across memory insights and context chunks — auto-selects best available method (hybrid → BM25 → keyword)

Graph Memory (2 tools)

Tool Description
memcp_related Traverse graph from an insight — find connected knowledge via semantic, temporal, causal, or entity edges
memcp_graph_stats Graph statistics — node count, edge counts by type, top entities

Retention Lifecycle (3 tools)

Tool Description
memcp_retention_preview Preview what would be archived or purged (dry-run, no changes)
memcp_retention_run Execute retention — archive old items, optionally purge past retention period
memcp_restore Restore an archived context or insight back to active

Multi-Project & Session (2 tools)

Tool Description
memcp_projects List all projects with insight, context, and session counts
memcp_sessions List sessions, optionally filtered by project

Benchmarks

MemCP includes a benchmark suite that measures the token efficiency advantage of persistent memory over context-window-only operation. The suite compares Native mode (all knowledge in the context window) against RLM mode (knowledge stored externally, loaded on demand via MCP tools).

Token Efficiency

Scenario Native RLM Advantage
Reload 50 insights 896 tokens 167 tokens 5.4x less
Reload 500 insights 9,380 tokens 462 tokens 20.3x less
Analyse 5K-token doc 5,077 tokens 231 tokens 22.0x less
Analyse 50K-token doc 50,460 tokens 231 tokens 218.4x less
Cross-reference knowledge 1,861 tokens 172 tokens 10.8x less

Context Rot Resistance

Event Native RLM
After /compact ~5% retained 100% retained
After 3 compactions ~2% retained 100% retained
Cross-session recall 0% 92%

Context Window Management

Scenario Native RLM
10 simultaneous docs — window utilisation 93.6% 1.0%
Documents manageable (128K window) 13 50
Turns before first eviction early 100+

Methodology note: The native baseline models worst-case context window loading. Real Claude Code also uses built-in tools for on-demand retrieval. See the full benchmark report for methodology notes, caveats, and all 40 comparisons.

Run the benchmarks yourself:

make benchmark

Full report: benchmark_output/benchmark_report.md | Raw data: benchmark_output/benchmark_results.json


Prerequisites

Before installing MemCP, ensure you have the following on your machine:

Requirement Version Check Command
Python 3.10 or higher python3 --version
pip Latest recommended pip --version
Git Any recent version git --version
Claude Code CLI Latest claude --version

Claude Code CLI is required for MCP server registration, hooks, and sub-agent deployment. Install it from Anthropic's documentation.

Optional (for Docker installation):

Requirement Version Check Command
Docker 20.10+ docker --version
Docker Compose 2.0+ (optional) docker compose version

Installation

Quick Install (Recommended)

git clone https://github.com/mohamedali-may/memcp.git
cd memcp
make setup

The interactive installer will:

  1. Check Python version, pip, Claude CLI
  2. Ask your preferred install method (dev/pip/Docker)
  3. Let you choose optional features (search, semantic, fuzzy, cache)
  4. Install MemCP and verify the import
  5. Register the MCP server with Claude Code
  6. Deploy 4 RLM sub-agents to ~/.claude/agents/ (user-level, available across all projects)
  7. Merge auto-save hooks into ~/.claude/settings.json (preserves existing settings)
  8. Deploy CLAUDE.md to your project (session instructions for Claude Code)

Docker

# Build and run
docker build -t memcp .
claude mcp add memcp -- docker run --rm -i \
  -v ~/.memcp:/data -e MEMCP_DATA_DIR=/data memcp

Or with docker-compose:

docker-compose up -d
claude mcp add memcp -- docker run --rm -i \
  -v ~/.memcp:/data -e MEMCP_DATA_DIR=/data memcp

Manual Installation

If you prefer not to use the interactive installer:

# 1. Install in a venv
make dev                                    # All extras (search, fuzzy, semantic, cache, …)
source .venv/bin/activate

# Or pick specific extras:
# pip install -e ".[dev]"                   # Dev tools only (pytest, ruff)
# pip install -e ".[dev,search,fuzzy]"      # + BM25 + typo tolerance
# pip install -e ".[dev,semantic,cache]"    # + vector embeddings + caching

# 2. Register with Claude Code
claude mcp add memcp -s user -- .venv/bin/python -m memcp

# 3. Deploy sub-agents (user-level, available across all projects)
mkdir -p ~/.claude/agents
cp agents/memcp-*.md ~/.claude/agents/

# 4. Merge hooks into global Claude Code settings
# If ~/.claude/settings.json doesn't exist or is empty:
cp hooks/snippets/settings.json ~/.claude/settings.json
# If it already has content, manually merge the "hooks" key from hooks/snippets/settings.json

# 5. Deploy CLAUDE.md to your project
cp templates/CLAUDE.md ./CLAUDE.md

# 6. Verify — in a Claude Code session, type: memcp_ping()

Uninstall

make teardown

The uninstaller lets you choose what to remove: MCP registration, sub-agents (~/.claude/agents/), hooks (from ~/.claude/settings.json), virtual environment, data directory, or everything.


How It Works

MemCP follows the RLM (Recursive Language Model) framework: content is stored externally as named variables, and Claude actively navigates to what it needs — rather than passively receiving retrieved chunks (RAG).

The Flow

Session Start
  │
  ├─ memcp_recall(importance="critical")     ← Load critical rules
  ├─ memcp_status()                          ← See memory stats
  │
  │  ... working ...
  │
  ├─ memcp_remember("Decided to use Redis",  ← Save a decision
  │     category="decision",
  │     importance="high",
  │     tags="architecture,cache")
  │
  │  ... context filling up ...
  │
  ├─ [Hook] "Consider saving context"        ← Auto-reminder at 10 turns
  │
  ├─ memcp_load_context("session-notes",     ← Store large content on disk
  │     content="...")
  │
  │  ... /compact ...
  │
  ├─ [Hook] "SAVE REQUIRED"                  ← Blocks until saved
  ├─ memcp_remember(...)                     ← Save remaining insights
  │
Next Session
  │
  ├─ memcp_recall(importance="critical")     ← Everything is still here
  └─ memcp_search("Redis decision")          ← Full search across sessions

Context-as-Variable (RLM)

Instead of loading a 50K-token document into the prompt:

memcp_load_context("report", file_path="large_report.md")
memcp_inspect_context("report")          → type=markdown, 18K tokens, preview
memcp_chunk_context("report", "headings") → 12 chunks created
memcp_peek_chunk("report", 3)            → reads only chunk #3 (~1500 tokens)
memcp_filter_context("report", "TODO|FIXME")  → matching lines only

Result: ~1500 tokens in context instead of 18,000. A 92% reduction.

Knowledge Graph (MAGMA)

Every memcp_remember() creates a graph node and auto-generates edges:

memcp_remember("Use SQLite for graph", category="decision", tags="db")
  │
  ├── temporal edge → insights created in last 30 min
  ├── entity edge  → other insights mentioning "SQLite"
  ├── semantic edge → top-3 similar insights by content overlap
  └── causal edge  → if "because"/"therefore" detected, links to cause

Then memcp_recall("why SQLite?") detects "why" intent and follows causal edges to find the reasoning.


Usage Examples

1. Remember Decisions Across Sessions

memcp_remember(
    "Never push directly to main — always use PRs with at least 1 review",
    category="decision",
    importance="critical",
    tags="git,workflow"
)

Next session: memcp_recall(importance="critical") loads this rule automatically.

2. Analyze a Large Codebase File

memcp_load_context("api-module", file_path="src/api/routes.py")
memcp_inspect_context("api-module")
  → python, 2400 lines, ~15K tokens
memcp_chunk_context("api-module", strategy="lines", chunk_size=100)
  → 24 chunks created
memcp_filter_context("api-module", "def\\s+\\w+")
  → all function definitions (50 lines instead of 2400)
memcp_peek_chunk("api-module", 5)
  → read chunk #5 in detail

3. Cross-Reference with Graph Traversal

memcp_remember("Found race condition in file writer", category="finding", tags="bug,concurrency")
memcp_remember("Fixed race condition with flock", category="decision", tags="bug,concurrency")

memcp_related("abc123", edge_type="causal")
  → shows the finding linked to the fix decision
memcp_graph_stats()
  → 42 nodes, 287 edges, top entities: ["file writer", "flock", ...]

4. Map-Reduce with Sub-Agents

For analyzing a large document across multiple chunks in parallel:

  1. memcp_chunk_context("design-doc", "auto") — partition
  2. Launch memcp-mapper instances in background (one per chunk, Haiku)
  3. Launch memcp-synthesizer in foreground with all mapper outputs (Sonnet)
  4. Get a coherent answer with citations, cross-referenced against the knowledge graph

Project Structure

memcp/
├── src/memcp/
│   ├── server.py                # FastMCP server — 21 tool definitions
│   ├── config.py                # Environment config (dataclass)
│   ├── core/
│   │   ├── memory.py            # remember, recall, forget, status
│   │   ├── graph.py             # MAGMA 4-graph (SQLite + auto-edges)
│   │   ├── context_store.py     # Named context variables on disk
│   │   ├── chunker.py           # 6 splitting strategies
│   │   ├── search.py            # Tiered: keyword → BM25 → semantic → hybrid
│   │   ├── embeddings.py        # Model2Vec / FastEmbed providers
│   │   ├── vecstore.py          # Numpy vector store (cosine similarity)
│   │   ├── embed_cache.py       # Disk cache for embeddings
│   │   ├── retention.py         # 3-zone lifecycle (active → archive → purge)
│   │   ├── project.py           # Git root detection + session management
│   │   └── fileutil.py          # Atomic writes, flock, safe names
│   └── tools/
│       ├── context_tools.py     # Context + chunking tool implementations
│       ├── search_tools.py      # Search tool implementation
│       ├── graph_tools.py       # Graph traversal tools
│       ├── retention_tools.py   # Retention lifecycle tools
│       └── project_tools.py     # Project/session tools
├── hooks/
│   ├── pre_compact_save.py      # Block /compact until context saved
│   ├── auto_save_reminder.py    # Progressive reminders (10/20/30 turns)
│   ├── reset_counter.py         # Reset counter after saves
│   └── snippets/
│       └── settings.json        # Hook registration (merged into ~/.claude/settings.json)
├── agents/                      # RLM sub-agent templates (deployed to ~/.claude/agents/)
│   ├── memcp-analyzer.md        # Peek → identify → load → analyze
│   ├── memcp-mapper.md          # MAP phase (Haiku, parallel)
│   ├── memcp-synthesizer.md     # REDUCE phase (Sonnet)
│   └── memcp-entity-extractor.md  # LLM entity extraction
├── templates/                   # Deployed by installer to target locations
│   └── CLAUDE.md                # Session instructions (deployed to project root)
├── scripts/
│   ├── install.sh               # Interactive installer (8 steps)
│   └── uninstall.sh             # Cleanup script
├── docs/
│   ├── ARCHITECTURE.md          # System design + Mermaid diagrams
│   ├── TOOLS.md                 # All 21 tools reference
│   ├── SEARCH.md                # Tiered search system
│   ├── GRAPH.md                 # MAGMA 4-graph memory
│   ├── HOOKS.md                 # Auto-save hooks
│   ├── COMPARISON.md            # MemCP vs alternatives
│   └── adr/                     # Architecture Decision Records
│       ├── README.md            # ADR index
│       ├── 001-sqlite-filesystem-hybrid-storage.md
│       ├── 002-tiered-search-architecture.md
│       ├── 003-magma-4-graph-memory.md
│       ├── 004-sub-agents-over-sub-llms.md
│       ├── 005-minimal-core-dependencies.md
│       ├── 006-mcp-tools-over-python-repl.md
│       ├── 007-auto-save-hook-architecture.md
│       ├── 008-three-zone-retention-lifecycle.md
│       ├── 009-user-level-global-deployment.md
│       └── 010-twelve-factor-configuration.md
├── tests/
│   ├── unit/                   # 16 test files, 341 unit tests
│   └── benchmark/              # 77 benchmarks (token efficiency, context rot, scale)
├── benchmark_output/           # Generated benchmark reports
│   ├── benchmark_report.md     # Human-readable comparison tables
│   └── benchmark_results.json  # Machine-readable raw data
├── .github/workflows/
│   ├── ci.yml                   # Lint + test matrix + Docker build
│   └── release.yml              # PyPI publish on tag
├── pyproject.toml               # Build config + deps + ruff + pytest
├── Dockerfile                   # Python 3.12-slim
├── docker-compose.yml           # Volume mount for ~/.memcp
├── CONTRIBUTING.md              # Contributor guidelines
├── SECURITY.md                  # Security policy
└── LICENSE                      # MIT

Configuration

All configuration is via environment variables (12-factor):

Variable Default Description
MEMCP_DATA_DIR ~/.memcp Data storage directory
MEMCP_MAX_INSIGHTS 10000 Max insight count before auto-pruning
MEMCP_MAX_CONTEXT_SIZE_MB 10 Max size per context variable
MEMCP_MAX_MEMORY_MB 2048 Max total memory usage
MEMCP_IMPORTANCE_DECAY_DAYS 30 Half-life for importance decay
MEMCP_RETENTION_ARCHIVE_DAYS 30 Days before archiving stale items
MEMCP_RETENTION_PURGE_DAYS 180 Days before purging archived items
MEMCP_EMBEDDING_PROVIDER auto model2vec, fastembed, or auto
MEMCP_SEARCH_ALPHA 0.6 Hybrid search blend (0=BM25 only, 1=semantic only)

Optional Dependencies

MemCP's tiered dependency system means core features work with zero extras:

Extra Package What It Unlocks Size
search bm25s BM25 ranked keyword search ~5MB
fuzzy rapidfuzz Typo-tolerant matching ~2MB
semantic model2vec + numpy Vector embeddings (256d) ~40MB
semantic-hq fastembed + numpy Higher quality embeddings (384d) ~200MB
cache diskcache Persistent embedding cache ~1MB
vectors sqlite-vec SIMD-accelerated KNN in SQLite ~2MB
pip install memcp                          # Core (keyword search)
pip install memcp[search,fuzzy]            # + ranked search + typo tolerance
pip install memcp[search,semantic,cache]   # + vector embeddings + caching
pip install memcp[all]                     # Everything

Documentation

Document Description
templates/CLAUDE.md Session instructions for Claude Code — deployed to project root by installer
docs/ARCHITECTURE.md System design with Mermaid diagrams, data flows, directory layout
docs/TOOLS.md All 21 tools — signatures, parameters, examples, tips
docs/SEARCH.md Tiered search system — how each tier works, installation, degradation
docs/GRAPH.md MAGMA 4-graph — edge types, intent detection, entity extraction, traversal
docs/HOOKS.md Auto-save hooks — setup, behavior, customization
docs/COMPARISON.md MemCP vs rlm-claude, CLAUDE.md, Letta, mem0, MAGMA
benchmark_output/benchmark_report.md Benchmark results — token efficiency, context rot, scale (77 benchmarks)
docs/adr/ Architecture Decision Records — 10 ADRs documenting key technical choices

Development

make dev                    # Create venv + install all extras + pre-commit
source .venv/bin/activate

make test                   # Unit tests (core)
make test-all               # Unit + benchmark tests
make benchmark              # Benchmark suite only
make lint                   # Lint + format check (CI-equivalent)
make fmt                    # Auto-fix lint + format
make run                    # Start the MCP server
make clean                  # Remove build/cache artifacts

Note: make dev installs all optional extras (search, fuzzy, semantic, cache, vectors, llm, benchmark), so search and semantic tests will run out of the box. If you installed only specific extras, some search-tier tests will be skipped automatically.

Run make or make help to see all available targets.

CI/CD

  • GitHub Actions runs on every push: lint (ruff) + unit test matrix (Python 3.10/3.11/3.12) + Docker build
  • Release workflow publishes to PyPI on v* tag push

Contributing

See CONTRIBUTING.md for guidelines on:

  • Setting up the development environment
  • Code style and conventions
  • Testing requirements
  • Submitting pull requests

Security

See SECURITY.md for:

  • Reporting vulnerabilities
  • Security design decisions
  • Data storage considerations

Key security properties:

  • All data stored locally (~/.memcp/) — nothing leaves your machine
  • Atomic file writes with fcntl.flock for concurrent access safety
  • Input validation via safe_name() prevents path traversal
  • SQLite WAL mode for ACID-compliant graph operations
  • No network calls (unless using remote embedding providers)

License

MIT — see the LICENSE file for details.


Authors

  • Mohamed Ali May — Creator and maintainer
  • Claude Opus 4.5 — (joint R&D)

Acknowledgments & Inspirations

MemCP builds on ideas from several research papers and projects:

  • RLM: Recursive Language Models (MIT, 2025) — The context-as-variable framework and recursive sub-query pattern that MemCP implements
  • MAGMA: Multi-Agent Graph Memory Architecture (2026) — The 4-graph memory model (semantic, temporal, causal, entity edges) adapted for MemCP's knowledge graph
  • FastMCP — The Python MCP framework used for tool definitions
  • Claude Code — Anthropic's CLI that MemCP extends with persistent memory
  • rlm-claude — Exploring RLM concepts for Claude Code memory using skills
  • Letta (MemGPT) — Pioneering work on LLM memory systems
  • mem0 — Embedding-based memory layer for AI applications

About

A persistent memory MCP server for Claude Code - Recursive Language Model integration for Claude Code inspired by MIT CSAIL paper

Topics

Resources

License

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages