Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 15 additions & 3 deletions botorch/models/gpytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from gpytorch import settings as gpt_settings
from gpytorch.distributions import MultitaskMultivariateNormal, MultivariateNormal
from gpytorch.lazy import lazify
from gpytorch.likelihoods.gaussian_likelihood import FixedNoiseGaussianLikelihood
from torch import Tensor

from .. import settings
Expand Down Expand Up @@ -181,7 +182,12 @@ def posterior(
)
mvn = self(X)
if observation_noise:
mvn = self.likelihood(mvn, X)
if isinstance(self.likelihood, FixedNoiseGaussianLikelihood):
# Use the mean of the previous noise values (TODO: be smarter here).
noise = self.likelihood.noise.mean().expand(X.shape[:-1])
mvn = self.likelihood(mvn, X, noise=noise)
else:
mvn = self.likelihood(mvn, X)
if self._num_outputs > 1:
mean_x = mvn.mean
covar_x = mvn.covariance_matrix
Expand Down Expand Up @@ -295,9 +301,15 @@ def posterior(
if output_indices is not None:
mvns = [self.forward_i(i, X) for i in output_indices]
if observation_noise:
lh_kwargs = [
{"noise": lh.noise.mean().expand(X.shape[:-1])}
if isinstance(lh, FixedNoiseGaussianLikelihood)
else {}
for lh in self.likelihood.likelihoods
]
mvns = [
self.likelihood_i(i, mvn, X)
for i, mvn in zip(output_indices, mvns)
self.likelihood_i(i, mvn, X, **lkws)
for i, mvn, lkws in zip(output_indices, mvns, lh_kwargs)
]
else:
mvns = self(*[X for _ in range(self.num_outputs)])
Expand Down
14 changes: 10 additions & 4 deletions test/models/fidelity/test_gp_regression_fidelity.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,12 @@

import math
import unittest
import warnings

import torch
from botorch import fit_gpytorch_model
from botorch.exceptions import UnsupportedError
from botorch.exceptions.errors import UnsupportedError
from botorch.exceptions.warnings import OptimizationWarning
from botorch.models.fidelity.gp_regression_fidelity import (
SingleTaskGPLTKernel,
SingleTaskMultiFidelityGP,
Expand Down Expand Up @@ -118,9 +120,13 @@ def test_gp(self, cuda=False):
mll = ExactMarginalLogLikelihood(model.likelihood, model).to(
**tkwargs
)
fit_gpytorch_model(
mll, sequential=False, options={"maxiter": 1}
)
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", category=OptimizationWarning
)
fit_gpytorch_model(
mll, sequential=False, options={"maxiter": 1}
)

# test init
self.assertIsInstance(model.mean_module, ConstantMean)
Expand Down
7 changes: 5 additions & 2 deletions test/models/test_gp_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -351,10 +351,13 @@ def test_fantasize(self, cuda=False):


def _get_pvar_expected(posterior, model, X, num_outputs):
lh_kwargs = {}
if isinstance(model.likelihood, FixedNoiseGaussianLikelihood):
lh_kwargs["noise"] = model.likelihood.noise.mean().expand(X.shape[:-1])
if num_outputs == 1:
return model.likelihood(posterior.mvn, X).variance.unsqueeze(-1)
return model.likelihood(posterior.mvn, X, **lh_kwargs).variance.unsqueeze(-1)
X_, odi = add_output_dim(X=X, original_batch_shape=model._input_batch_shape)
pvar_exp = model.likelihood(model(X_), X_).variance
pvar_exp = model.likelihood(model(X_), X_, **lh_kwargs).variance
return torch.stack(
[pvar_exp.select(dim=odi, index=i) for i in range(num_outputs)], dim=-1
)
22 changes: 18 additions & 4 deletions test/test_fit.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

import torch
from botorch import fit_gpytorch_model
from botorch.exceptions.warnings import OptimizationWarning
from botorch.exceptions.warnings import BotorchWarning, OptimizationWarning
from botorch.models import FixedNoiseGP, HeteroskedasticSingleTaskGP, SingleTaskGP
from botorch.optim.fit import (
OptimizationIteration,
Expand Down Expand Up @@ -151,7 +151,11 @@ def test_fit_gpytorch_model_singular(self, cuda=False):
mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
mll.to(device=device, dtype=dtype)
# this will do multiple retries (and emit warnings, which is desired)
fit_gpytorch_model(mll, options=options, max_retries=2)
with warnings.catch_warnings(record=True) as ws:
fit_gpytorch_model(mll, options=options, max_retries=2)
self.assertTrue(
any(issubclass(w.category, OptimizationWarning) for w in ws)
)

def test_fit_gpytorch_model_singular_cuda(self):
if torch.cuda.is_available():
Expand All @@ -168,8 +172,7 @@ def test_fit_gpytorch_model_sequential(self, cuda=False):
options = {"disp": False, "maxiter": 1}
for double in (False, True):
for kind in ("SingleTaskGP", "FixedNoiseGP", "HeteroskedasticSingleTaskGP"):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=OptimizationWarning)
with warnings.catch_warnings(record=True) as ws:
mll = self._getBatchedModel(kind=kind, double=double, cuda=cuda)
mll = fit_gpytorch_model(mll, options=options, max_retries=1)
mll = self._getBatchedModel(kind=kind, double=double, cuda=cuda)
Expand All @@ -180,6 +183,17 @@ def test_fit_gpytorch_model_sequential(self, cuda=False):
mll = fit_gpytorch_model(
mll, options=options, sequential=False, max_retries=1
)
if kind == "HeteroskedasticSingleTaskGP":
self.assertTrue(
any(issubclass(w.category, BotorchWarning) for w in ws)
)
self.assertTrue(
any(
"Failed to convert ModelList to batched model"
in str(w.message)
for w in ws
)
)

def test_fit_gpytorch_model_sequential_cuda(self):
if torch.cuda.is_available():
Expand Down