-
Notifications
You must be signed in to change notification settings - Fork 580
Fix collection inputs to postproc modules #2733
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
This pull request was exported from Phabricator. Differential Revision: D69292525 |
f9b4c11 to
a4200a6
Compare
Summary:
Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution)
To illustrate:
```
def forward(model_input: ...) -> ...:
modified_input = model_input.float_features + 1
sharded_module_input = self.postproc(model_input, modified_input) # works
sharded_module_input = self.postproc(model_input, [123]) # works
sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails
sharded_module_input = self.postproc(model_input, [modified_input]) # fails
sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works
sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails
sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails
return self.ebc(sharded_module_input)
```
Differential Revision: D69292525
|
This pull request was exported from Phabricator. Differential Revision: D69292525 |
…postproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
a4200a6 to
17b0810
Compare
|
This pull request was exported from Phabricator. Differential Revision: D69292525 |
17b0810 to
9066e6b
Compare
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
|
This pull request was exported from Phabricator. Differential Revision: D69292525 |
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
9066e6b to
5bcc494
Compare
|
This pull request was exported from Phabricator. Differential Revision: D69292525 |
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
5bcc494 to
0aedf8b
Compare
|
This pull request was exported from Phabricator. Differential Revision: D69292525 |
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
0aedf8b to
6467b11
Compare
|
This pull request was exported from Phabricator. Differential Revision: D69292525 |
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
6467b11 to
70d7dcb
Compare
|
This pull request was exported from Phabricator. Differential Revision: D69292525 |
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Reviewed By: sarckk Differential Revision: D69292525
70d7dcb to
e01f022
Compare
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Reviewed By: sarckk Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Reviewed By: sarckk Differential Revision: D69292525
|
This pull request was exported from Phabricator. Differential Revision: D69292525 |
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Reviewed By: sarckk Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Reviewed By: sarckk Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Reviewed By: sarckk Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Reviewed By: sarckk Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Reviewed By: sarckk Differential Revision: D69292525
…stproc modules (meta-pytorch#2733) Summary: Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution) To illustrate: ``` def forward(model_input: ...) -> ...: modified_input = model_input.float_features + 1 sharded_module_input = self.postproc(model_input, modified_input) # works sharded_module_input = self.postproc(model_input, [123]) # works sharded_module_input = self.postproc(model_input, [torch.ones_like(modified_input)]) # fails sharded_module_input = self.postproc(model_input, [modified_input]) # fails sharded_module_input = self.postproc(model_input, { 'a': 123 }) # works sharded_module_input = self.postproc(model_input, { 'a': torch.ones_like(modified_input) }) # fails sharded_module_input = self.postproc(model_input, { 'a': modified_input }) # fails return self.ebc(sharded_module_input) ``` Reviewed By: sarckk Differential Revision: D69292525
e01f022 to
979f426
Compare
|
This pull request was exported from Phabricator. Differential Revision: D69292525 |
Summary:
Postproc modules with collection inputs (list or dict) with non-static (derived from input or other postproc) elements were not properly rewritten - input elements remained fx.Nodes even during the actual model forward (i.e. outside rewrite, during pipeline execution)
To illustrate: