Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 30 additions & 13 deletions torchrec/quant/embedding_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,10 +135,15 @@ def to_sparse_type(data_type: DataType) -> SparseType:

self._is_weighted = is_weighted
self._embedding_bag_configs: List[EmbeddingBagConfig] = embedding_configs
# pyre-fixme[24]: Non-generic type `nn.modules.container.ModuleList` cannot
# take parameters.
self.embedding_bags: nn.ModuleList[nn.Module] = nn.ModuleList()
self.embedding_bags: nn.ModuleList = nn.ModuleList()
self._embedding_names: List[str] = []
self._lengths_per_embedding: List[int] = []
shared_feature: Dict[str, bool] = {}
table_names = set()
for emb_config in self._embedding_bag_configs:
if emb_config.name in table_names:
raise ValueError(f"Duplicate table name {emb_config.name}")
table_names.add(emb_config.name)
emb_module = IntNBitTableBatchedEmbeddingBagsCodegen(
embedding_specs=[
(
Expand All @@ -155,39 +160,51 @@ def to_sparse_type(data_type: DataType) -> SparseType:
weight_lists=[table_name_to_quantized_weights[emb_config.name]],
device=device,
)

self.embedding_bags.append(emb_module)
if not emb_config.feature_names:
emb_config.feature_names = [emb_config.name]
for feature_name in emb_config.feature_names:
if feature_name not in shared_feature:
shared_feature[feature_name] = False
else:
shared_feature[feature_name] = True
self._lengths_per_embedding.append(emb_config.embedding_dim)

for emb_config in self._embedding_bag_configs:
for feature_name in emb_config.feature_names:
if shared_feature[feature_name]:
self._embedding_names.append(feature_name + "@" + emb_config.name)
else:
self._embedding_names.append(feature_name)

def forward(
self,
features: KeyedJaggedTensor,
) -> KeyedTensor:
keys: List[str] = []
pooled_embeddings: List[Tensor] = []
length_per_key: List[int] = []
feature_dict = features.to_dict()
for emb_config, emb_module in zip(
self._embedding_bag_configs, self.embedding_bags
):
for feature_name in emb_config.feature_names:
keys.append(feature_name)

values = features[feature_name].values()
offsets = features[feature_name].offsets()
weights = features[feature_name].weights_or_none()
f = feature_dict[feature_name]
values = f.values()
offsets = f.offsets()
pooled_embeddings.append(
emb_module(
indices=values.int(),
offsets=offsets.int(),
per_sample_weights=weights,
per_sample_weights=f.weights() if self._is_weighted else None,
).float()
)

length_per_key.append(emb_config.embedding_dim)

return KeyedTensor(
keys=keys,
keys=self._embedding_names,
values=torch.cat(pooled_embeddings, dim=1),
length_per_key=length_per_key,
length_per_key=self._lengths_per_embedding,
)

def state_dict(
Expand Down
79 changes: 52 additions & 27 deletions torchrec/quant/tests/test_embedding_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
# LICENSE file in the root directory of this source tree.

import unittest
from typing import List

import torch
from torchrec.modules.embedding_configs import (
Expand All @@ -21,20 +22,11 @@


class EmbeddingBagCollectionTest(unittest.TestCase):
def test_ebc(self) -> None:
eb1_config = EmbeddingBagConfig(
name="t1", embedding_dim=16, num_embeddings=10, feature_names=["f1"]
)
eb2_config = EmbeddingBagConfig(
name="t2", embedding_dim=16, num_embeddings=10, feature_names=["f2"]
)
ebc = EmbeddingBagCollection(tables=[eb1_config, eb2_config])
def _test_ebc(
self, tables: List[EmbeddingBagConfig], features: KeyedJaggedTensor
) -> None:
ebc = EmbeddingBagCollection(tables=tables)

features = KeyedJaggedTensor(
keys=["f1", "f2"],
values=torch.as_tensor([0, 1]),
lengths=torch.as_tensor([1, 1]),
)
embeddings = ebc(features)

# test forward
Expand All @@ -50,23 +42,56 @@ def test_ebc(self) -> None:
quantized_embeddings = qebc(features)

self.assertEqual(embeddings.keys(), quantized_embeddings.keys())
self.assertEqual(embeddings["f1"].shape, quantized_embeddings["f1"].shape)
self.assertTrue(
torch.allclose(
embeddings["f1"].cpu(),
quantized_embeddings["f1"].cpu().float(),
atol=1,
for key in embeddings.keys():
self.assertEqual(embeddings[key].shape, quantized_embeddings[key].shape)
self.assertTrue(
torch.allclose(
embeddings[key].cpu(),
quantized_embeddings[key].cpu().float(),
atol=1,
)
)
)
self.assertTrue(
torch.allclose(
embeddings["f2"].cpu(),
quantized_embeddings["f2"].cpu().float(),
atol=1,
)
)

# test state dict
state_dict = ebc.state_dict()
quantized_state_dict = qebc.state_dict()
self.assertEqual(state_dict.keys(), quantized_state_dict.keys())

def test_ebc(self) -> None:
eb1_config = EmbeddingBagConfig(
name="t1", embedding_dim=16, num_embeddings=10, feature_names=["f1"]
)
eb2_config = EmbeddingBagConfig(
name="t2", embedding_dim=16, num_embeddings=10, feature_names=["f2"]
)
features = KeyedJaggedTensor(
keys=["f1", "f2"],
values=torch.as_tensor([0, 1]),
lengths=torch.as_tensor([1, 1]),
)
self._test_ebc([eb1_config, eb2_config], features)

def test_shared_tables(self) -> None:
eb_config = EmbeddingBagConfig(
name="t1", embedding_dim=16, num_embeddings=10, feature_names=["f1", "f2"]
)
features = KeyedJaggedTensor(
keys=["f1", "f2"],
values=torch.as_tensor([0, 1]),
lengths=torch.as_tensor([1, 1]),
)
self._test_ebc([eb_config], features)

def test_shared_features(self) -> None:
eb1_config = EmbeddingBagConfig(
name="t1", embedding_dim=16, num_embeddings=10, feature_names=["f1"]
)
eb2_config = EmbeddingBagConfig(
name="t2", embedding_dim=16, num_embeddings=10, feature_names=["f1"]
)
features = KeyedJaggedTensor(
keys=["f1"],
values=torch.as_tensor([0, 1]),
lengths=torch.as_tensor([1, 1]),
)
self._test_ebc([eb1_config, eb2_config], features)