Skip to content

EVA for ML tasks #10

@PereteanuGeorge

Description

@PereteanuGeorge

Hello,

I am trying to use EVA for a simple and encrypted MNIST model classifier.

The code for my ConvNet is the following

class ConvNet(torch.nn.Module):
    def __init__(self, hidden=64, output=10):
        super(ConvNet, self).__init__()
        torch.nn.Sequential()
        self.conv1 = torch.nn.Conv2d(1, 4, kernel_size=7, padding=0, stride=3)
        self.fc1 = torch.nn.Linear(256, hidden)
        self.fc2 = torch.nn.Linear(hidden, output)

    def forward(self, x):
        x = self.conv1(x)
        x = x * x
        x = x.view(-1, 256)
        x = self.fc1(x)
        x = x * x
        x = self.fc2(x)
        return x

However, having this simple piece of code

prog = EvaProgram('prog', vec_size=32*32)
with prog:
    image = Input('image')
    result = model(image)
    probs = torch.softmax(torch.tensor(result), 0)
    label_max = torch.argmax(probs)
    print(f'label_max type {type(label_max)}')
    print(f'label_max value {label_max}')
    Output('label_max', label_max.numpy())

Throws me this error: TypeError: conv2d(): argument 'input' (position 1) must be Tensor, not Expr

If however I replace the code for EVA with:

prog = EvaProgram('prog', vec_size=32*32)
with prog:
    result = model(image)
    probs = torch.softmax(torch.tensor(result), 0)
    label_max = torch.argmax(probs)
    print(f'label_max type {type(label_max)}')
    print(f'label_max value {label_max}')
    Output('label_max', label_max.numpy())

It gives me TypeError: No conversion to Term available for 0.

I get what both errors mean but I couldn't find any way of how to solve them. I was wondering if EVA supports ML tasks and if there any concrete examples other the one with image_processing, Thanks a lot!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions