A Framework of Knowledge Graph Embedding Models (Including TransE, TransH, ConvKB) by tensorflow.
(1) TransE: Translating Embeddings for Modeling Multi-relational Data
(2) TransH: Knowledge Graph Embedding by Translating on Hyperplanes
(3) ConvKB: A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network
(1) Fixed embedding dimension of 100.
(2) Only considering filter setting.
(3) Early stopped by Hist@10 reuslt on dev dataset.
| MR | MRR | Hist@1 | Hist@3 | Hist@10 | |
|---|---|---|---|---|---|
| TransE | 85.0 | 0.575 | 0.446 | 0.667 | 0.790 |
| TransH | 82.6 | 0.580 | 0.452 | 0.670 | 0.793 |
| ConvKB | 79.2 | 0.596 | 0.470 | 0.686 | 0.805 |
python Run_KGE.py --model [TransX] --dataset FB15k --margin 1.0 --l_r 5e-3 --batch_size 10000 --epoches 5000 --earlystop 2
python Run_KGE.py --model ConvKB --dataset FB15k --n_filter 50 --l_r 1e-3 --batch_size 10000 --epoches 500 --earlystop 5
| MR | MRR | Hist@1 | Hist@3 | Hist@10 | |
|---|---|---|---|---|---|
| TransE | 299.3 | 0.312 | 0.225 | 0.347 | 0.482 |
| TransH | 300.0 | 0.318 | 0.230 | 0.355 | 0.488 |
| ConvKB | 251.7 | 0.330 | 0.242 | 0.365 | 0.500 |
python Run_KGE.py --model [TransX] --dataset FB15k-237 --margin 1.0 --l_r 5e-3 --batch_size 10000 --epoches 5000 --earlystop 2
python Run_KGE.py --model ConvKB --dataset FB15k-237 --n_filter 50 --l_r 1e-3 --batch_size 10000 --epoches 500 --earlystop 5
| MR | MRR | Hist@1 | Hist@3 | Hist@10 | |
|---|---|---|---|---|---|
| TransE | 290.0 | 0.462 | 0.106 | 0.808 | 0.937 |
| TransH | 302.0 | 0.465 | 0.105 | 0.817 | 0.936 |
| ConvKB | 300.2 | 0.499 | 0.226 | 0.743 | 0.911 |
python Run_KGE.py --model [TransX] --dataset WN18 --margin 4.0 --l_r 5e-3 --batch_size 3000 --epoches 5000 --earlystop 2
python Run_KGE.py --model ConvKB --dataset WN18 --n_filter 50 --l_r 1e-3 --batch_size 3000 --epoches 500 --earlystop 5
| MR | MRR | Hist@1 | Hist@3 | Hist@10 | |
|---|---|---|---|---|---|
| TransE | 3848.1 | 0.185 | 0.012 | 0.319 | 0.471 |
| TransH | 3795.8 | 0.188 | 0.011 | 0.330 | 0.474 |
| ConvKB | 4317.9 | 0.153 | 0.018 | 0.236 | 0.415 |
python Run_KGE.py --model [TransX] --dataset WN18RR --margin 4.0 --l_r 5e-3 --batch_size 3000 --epoches 5000 --earlystop 2
python Run_KGE.py --model ConvKB --dataset WN18RR --n_filter 50 --l_r 1e-3 --batch_size 3000 --epoches 500 --earlystop 5
| MR | MRR | Hist@1 | Hist@3 | Hist@10 | |
|---|---|---|---|---|---|
| TransE | 6.7 | 0.463 | 0.258 | 0.607 | 0.834 |
| TransH | 5.3 | 0.543 | 0.334 | 0.711 | 0.878 |
| ConvKB | 3.4 | 0.690 | 0.557 | 0.786 | 0.936 |
python Run_KGE.py --model [TransX] --dataset Kinship --margin 0.1 --l_r 5e-3 --batch_size 500 --epoches 5000 --earlystop 2
python Run_KGE.py --model ConvKB --dataset Kinship --n_filter 50 --l_r 1e-3 --batch_size 500 --epoches 500 --earlystop 5
| MR | MRR | Hist@1 | Hist@3 | Hist@10 | |
|---|---|---|---|---|---|
| TransE | 6217.5 | 0.351 | 0.277 | 0.394 | 0.477 |
| TransH | 6271.8 | 0.362 | 0.291 | 0.404 | 0.491 |
| ConvKB | 7733.1 | 0.295 | 0.241 | 0.324 | 0.384 |
python Run_KGE.py --model [TransX] --dataset NELL-995 --margin 5.0 --l_r 5e-3 --batch_size 5000 --epoches 5000 --earlystop 2
python Run_KGE.py --model ConvKB --dataset NELL-995 --n_filter 50 --l_r 1e-3 --batch_size 5000 --epoches 500 --earlystop 5
| MR | MRR | Hist@1 | Hist@3 | Hist@10 | |
|---|---|---|---|---|---|
| TransE | 1.8 | 0.861 | 0.766 | 0.952 | 0.986 |
| TransH | 1.6 | 0.854 | 0.750 | 0.950 | 0.987 |
| ConvKB | 1.5 | 0.881 | 0.781 | 0.979 | 0.991 |
python Run_KGE.py --model [TransX] --dataset UMLS --margin 0.1 --l_r 5e-3 --batch_size 500 --epoches 5000 --earlystop 2
python Run_KGE.py --model ConvKB --dataset UMLS --n_filter 50 --l_r 1e-3 --batch_size 500 --epoches 500 --earlystop 5
[TransX] from {TransE, TransH}