Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 42 additions & 9 deletions mindtorch/_apis/npu.py
Original file line number Diff line number Diff line change
Expand Up @@ -693,8 +693,10 @@ def clamp_scalar(value, min_value, max_value):
return value

def cumsum(self, dim, dtype):
if use_pyboost():
if use_pyboost() and not ON_ORANGE_PI:
return pyboost.cumsum_ext_op(self, dim, dtype)
if self.shape[dim] == 0:
return mindtorch.tensor([], dtype=self.dtype, device=self.device)
return legacy.cum_sum(self, dim, False, False)

def reduce_any(input, axis, keepdims):
Expand Down Expand Up @@ -1275,12 +1277,16 @@ def square(input):
def lgamma(input):
return legacy.lgamma(input)

def reverse_v2(input, axis):
if isinstance(axis, int):
axis = (axis,)
if use_pyboost():
return pyboost.reverse_v2_impl(input, axis)
return legacy.reverse_v2(input, axis)
def reverse_v2(input, dims):
if isinstance(dims, int):
dims = (dims,)
if use_pyboost() and not ON_ORANGE_PI:
return pyboost.reverse_v2_impl(input, dims)

for dim in dims:
idx = arange(input.size(dim) - 1, -1, -1, None)
input = index_select(input, dim, idx)
return input

def unique_consecutive(input, return_inverse, return_counts, dim):
if use_pyboost():
Expand Down Expand Up @@ -1579,9 +1585,36 @@ def adaptive_avg_pool1d(input, output_size):
return legacy.adaptive_avg_pool1d(input, output_size)

def conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
if use_pyboost():
if use_pyboost() and not ON_ORANGE_PI:
return pyboost.conv3d_ext_op(input, weight, bias, stride, padding, dilation, groups)
return legacy.conv3d(input, weight, bias, stride, padding, dilation, groups)
pad_mode = 'pad'
pad = padding
if isinstance(padding, (tuple, list)):
pad = (padding[0], padding[0], padding[1], padding[1], padding[2], padding[2])
elif isinstance(padding, int):
pad = (padding,) * 6
if not isinstance(padding, (int, tuple, list)):
pad_mode = padding
pad = (0,) * 6

out_channels = weight.shape[0]
kernel_size = weight.shape[2:]

output = legacy.conv3_d(input, weight,
out_channels,
kernel_size,
1,
pad_mode,
pad,
tuple(stride),
dilation,
groups,
"NCDHW")

if bias is not None:
output = legacy.bias_add(output, bias, 'NCHW')
return output


def outer(input, other):
if use_pyboost():
Expand Down