Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 8 additions & 3 deletions swift/megatron/model/gpt_bridge.py
Original file line number Diff line number Diff line change
Expand Up @@ -978,8 +978,9 @@ def _convert(self, mg_models, hf_state_dict, hf_prefix: str, to_mcore: bool, tqd
else:
yield from list(self._add_prefix(hf_state_dict, hf_prefix).items())
hf_state_dict = {}
for layer_idx in tqdm(
range(self.args.num_layers), dynamic_ncols=True, desc=tqdm_desc, disable=self.disable_tqmd):
layer_idx = 0
prog_bar = tqdm(range(self.args.num_layers), dynamic_ncols=True, desc=tqdm_desc, disable=self.disable_tqmd)
while layer_idx < self.args.num_layers:
lm_model = getattr(mg_model, 'language_model') if self.args.is_multimodal else mg_model
if len(lm_model.decoder.layers) > 0:
start_idx = lm_model.decoder.layers[0].layer_number - 1
Expand All @@ -990,16 +991,20 @@ def _convert(self, mg_models, hf_state_dict, hf_prefix: str, to_mcore: bool, tqd
mg_layer = lm_model.decoder.layers[layer_idx - start_idx]
else:
if to_mcore:
layer_idx += 1
prog_bar.update()
continue
else:
mg_layer = None
if not to_mcore and self.pp_size > 1:
has_model = torch.tensor([mg_layer is not None], dtype=torch.bool, device='cuda')
dist.all_reduce(has_model, group=self.pp_group)
if not has_model:
mg_model = next(mg_models)
mg_model = next(mg_models) # compat vpp
continue
res = self._set_layer_state(mg_layer, hf_state_dict, f'{self.hf_layers_prefix}.', layer_idx, to_mcore)
layer_idx += 1
prog_bar.update()
if to_mcore:
yield
else:
Expand Down
5 changes: 2 additions & 3 deletions swift/megatron/trainers/kto_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def _kto_get_logps(self, output_tensor, data, is_KL: bool, is_ref: bool, length:
return self.get_logps(output, labels, packed_seq_params, packed_seq_params.num_samples)

def loss_func(self, output_tensor, *, data, kl_data, label):
length = data['packed_seq_params'].cu_seqlens_q[-1]
length = data['packed_seq_params'].cu_seqlens_q[-1] // self.args.context_parallel_size
policy_logps = self._kto_get_logps(output_tensor, data, False, False, length)
ref_logps = self._kto_get_logps(output_tensor, data, False, True, length)
if self.args.calculate_KL:
Expand Down Expand Up @@ -121,8 +121,7 @@ def forward_step(self, data_iterator, model):
data.pop('loss_scale', None)
kl_data.pop('loss_scale', None)

length = data['packed_seq_params'].cu_seqlens_q[-1]

length = data['packed_seq_params'].cu_seqlens_q[-1] // self.args.context_parallel_size
with torch.no_grad(), self.null_ref_context() as ref_models:
ref_model = ref_models[vp_stage or 0]
if self.args.calculate_KL:
Expand Down
Loading