Skip to content

Using Wav2Vec2-base as backbone does not work #5

@jairsan

Description

@jairsan

Training using "facebook/wav2vec2-base" as backbone consistently fails with the following error:

1020it [01:35, 10.71it/s]
Starting epoch 0 ...
Traceback (most recent call last):
  File "/scratch/jiranzotmp/trabajo/ICASSP2023_argumentation/software/SHAS/src/supervised_hybrid/train.py", line 365, in <module>
    train(args)
  File "/scratch/jiranzotmp/trabajo/ICASSP2023_argumentation/software/SHAS/src/supervised_hybrid/train.py", line 147, in train
    logits = sfc_model(wav2vec_hidden, out_mask)
  File "/home/jiranzo/anaconda3/envs/shas/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
    return forward_call(*input, **kwargs)
  File "/scratch/jiranzotmp/trabajo/ICASSP2023_argumentation/software/SHAS/src/supervised_hybrid/models.py", line 41, in forward
    x = self.transformer(x, src_key_padding_mask=attention_mask)
  File "/home/jiranzo/anaconda3/envs/shas/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
    return forward_call(*input, **kwargs)
  File "/home/jiranzo/anaconda3/envs/shas/lib/python3.9/site-packages/torch/nn/modules/transformer.py", line 198, in forward
    output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)
  File "/home/jiranzo/anaconda3/envs/shas/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
    return forward_call(*input, **kwargs)
  File "/home/jiranzo/anaconda3/envs/shas/lib/python3.9/site-packages/torch/nn/modules/transformer.py", line 336, in forward
    x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask)
  File "/home/jiranzo/anaconda3/envs/shas/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
    return forward_call(*input, **kwargs)
  File "/home/jiranzo/anaconda3/envs/shas/lib/python3.9/site-packages/torch/nn/modules/normalization.py", line 189, in forward
    return F.layer_norm(
  File "/home/jiranzo/anaconda3/envs/shas/lib/python3.9/site-packages/torch/nn/functional.py", line 2347, in layer_norm
    return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
RuntimeError: Given normalized_shape=[1024], expected input with shape [*, 1024], but got input of size[28, 999, 768]

Training with the default "facebook/wav2vec2-xls-r-300m" using the same setup gives me no issues.

Could this have something to do with the fact that wav2vec2-base uses "do_stable_layer_norm": false, whereas facebook/wav2vec2-xls-r-300m uses "do_stable_layer_norm": true?
My first guess would be that the assumptions made here might not hold if "do_stable_layer_norm": false.

wav2vec_model.encoder.layer_norm = torch.nn.Identity()

I will let you know if I find any additional information about this.

EDIT:

Actually it was something much simpler, the wav2vec2 base model has different hidden dimension (768 instead of 1024). Changing constants.py seems to fix everything:
https://github.com/mt-upc/SHAS/blob/main/src/supervised_hybrid/constants.py#L4

Feel free to close the issue if you think this is obvious.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions